Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Sci Total Environ ; 952: 175839, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218099

RESUMEN

Nitrate (NO3-) is an important contributor to PM2.5 which can adversely affect the environment and human health. A noticeable decrease in NOx concentrations has been reported due to the lockdown measures implemented to curb the spread of Corona Virus Disease 2019 (COVID-19). However, questions remain, regarding the nonlinear relationship between NOx and NO3-. Here, we collected PM2.5 samples in two periods, before and during the lockdown of COVID-19 in Shanghai. Dual isotopes (δ18O-NO3- and δ15N-NO3-) of NO3- were measured to investigate the formation pathways and potential sources of NO3-. The results showed that the concentration of NO3- decreased significantly during the lockdown period compared to the period before the lockdown. Additionally, the hydroxyl pathway was the dominant contributor to NO3- production during the lockdown period, while N2O5 hydrolyses dominated the formation of NO3- before the lockdown. This change is largely attributable to alterations in the oxidative potential of the environment. In comparison to the period preceding the lockdown, the relative contributions of each NOx source remained largely unchanged throughout the lockdown periods. Nevertheless, the concentration of NO3- contributed by each NOx source exhibited a notable decline, particularly the mobile sources and coal combustion. Furthermore, the reduction extent of NO3- due to the lockdown period was also greater than the reduction during the Clean Air Actions (2013-2017). Our findings provide evidence that the COVID-19 lockdown led to a decrease in NO3- concentration due to changes in the formation pathway and reductions in NOx emissions from various sources.

2.
Environ Pollut ; : 124958, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284409

RESUMEN

Although total carbon (TC) is an important component of fine particulate matter (PM2.5: particulate matter with aerodynamic diameter of < 2.5 µm); its sources remain partially unidentified, especially in coastal urban areas. With ongoing development of the global economy and maritime activities, ship-generated TC emissions in port areas cannot be neglected. In this study, from 11 September 2017 to 31 August 2018, we collected 355 PM2.5 samples in Qingdao, China, to determine the water-soluble ion concentrations, TC concentrations, and stable carbon isotopes (δ13CTC). During the open fishing season (OFS; 11 September 2017 to 30 April 2018) and the closed fishing season (CFS; 1 May 2018 to 31 August 2018), the TC concentrations were 9.30 ± 5.38 µg/m3 and 3.36 ± 2.10 µg/m3 respectively, and the corresponding δ13CTC values were -24.53‰ ± 1.17‰ and -27.03‰ ± 0.91‰, respectively, indicating significant differences (p < 0.05) between the two periods. The differences in TC concentrations and the δ13CTC values between the OFS and CFS reflect changes in the source of contamination. Bayesian model was used to quantify the contributions of different TC sources, revealing that ship emissions accounted for approximately 35.3% of the total, which was close to the contribution from the largest source, i.e., motor vehicles (39%). Using the ship emission inventory, Qingdao's ship emissions were further quantified at 455 metric tons, representing 35%-40% of the total TC emissions around Qingdao. Notably, fishing ships contributed approximately 40% of the total ship emissions. These findings underscore the considerable impact of ship emissions, particularly those from fishing ships, on TC concentrations in coastal urban areas.

3.
Compr Rev Food Sci Food Saf ; 23(5): e13430, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39217522

RESUMEN

Pulsed vacuum drying (PVD) is a novel vacuum drying method that has demonstrated significant potential in improving energy efficiency and product quality in the drying of foods and agricultural products. The current work provides a comprehensive analysis of the latest advancements in PVD technology, including its historical development, fundamental principles, and mechanistic aspects. The impact of periodic pulsed pressure changes between vacuum and atmospheric pressure on heat and moisture transfer, as well as structural changes in foods at micro- and macro-scales, is thoroughly discussed. The article also highlights the influential drying parameters, the integration of novel auxiliary heaters, and the applications of PVD across various fruits, vegetables, and herbs. Furthermore, the review examines the current status and needs for mathematical modeling of PVD processes, identifying key challenges, research opportunities, and future trends for industrial application. The findings suggest that PVD not only enhances drying efficiency and reduces energy consumption but also preserves the nutritional value, color, and texture of dried products better than traditional methods. Future research should focus on optimizing process parameters and integrating advanced control systems to further improve the scalability and applicability of PVD technology in the food industry.


Asunto(s)
Desecación , Frutas , Verduras , Verduras/química , Vacio , Frutas/química , Desecación/métodos , Conservación de Alimentos/métodos , Manipulación de Alimentos/métodos
4.
Food Chem ; 458: 140093, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943960

RESUMEN

This study evaluated the effects of postharvest ripening (0-6 days, D0-6) on cell wall pectin profile, infrared-assisted hot air-drying characteristics, and sugar content. Results showed that during postharvest ripening progress, the content of water-soluble pectin (WSP) and chelate-soluble pectin (CSP) increased while the content of Na2CO3-soluble pectin (NSP) and hemicellulose (HC) decreased. In addition, the average molecular weight of WSP increased while the average molecular weight of NSP decreased. Secondly, the drying time of plums with different postharvest ripening periods was in the order: D3 < D4 < D2 < D1 < D0 < D5 < D6. Furthermore, the sugar content of dried plums was mainly influenced by drying time, with three stages of sugar changes observed, tied to moisture content: (1) Sucrose hydrolyzes (50-85%); (2) Fructose and glucose degrade (15-50%); (3) Sorbitol degrades (15-42%). These findings indicate that the transformation of cell wall pectin profile during the postharvest ripening process alters drying behavior and regulates the sugar content of dried plums. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Galacturonic acid (PubChem CID: 439215); Acetone (PubChem CID: 180); Distilled water (PubChem CID: 962); Trans-1,2-Diaminocyclohexane-N, N, N, N'-tetraacetic acid (PubChem CID: 2723845); Na2CO3 (PubChem CID: 10340); Glucose (PubChem CID: 5793); fructose (PubChem CID: 2723872) sucrose (PubChem CID: 5988) sorbitol (PubChem CID: 5780) and Sodium borohydride (PubChem CID: 4311764).


Asunto(s)
Pared Celular , Frutas , Pectinas , Pectinas/metabolismo , Pectinas/química , Pectinas/análisis , Pared Celular/química , Pared Celular/metabolismo , Frutas/química , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Desecación , Prunus domestica/química , Prunus domestica/metabolismo , Prunus domestica/crecimiento & desarrollo , Azúcares/metabolismo , Azúcares/análisis , Manipulación de Alimentos
5.
J Hazard Mater ; 476: 134984, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38943891

RESUMEN

As well known, surface discharge cold plasma has efficient inactivation ability and a variety of RONS are main active particles for inactivation, but their synergistic mechanism is still not clear. Therefore, surface discharge cold plasma system was applied to treat Pseudomonas fluorescens to study bacterial inactivation mechanism and energy benefit. Results showed that energy efficiency was directly proportional to applied voltage and inversely proportional to initial concentration. Cold plasma treatment for 20 min was inactivated by approximately > 4-log10Pseudomonas fluorescens and application of •OH and 1O2 scavengers significantly improved survival rate. In addition, •OH and 1O2 destroyed cell membrane structure and membrane permeability, which promoted diffusion of RONS into cells and affecting energy metabolism and antioxidant capacity, leading to bacterial inactivation. Furthermore, accumulation of intracellular NO and ONOOH was related to infiltration of exogenous RNS, while accumulation of •OH, H2O2, 1O2, O2- was the result of joint action of endogenous and exogenous ROS. Transcriptome analysis revealed that different RONS of cold plasma were responsible for Pseudomonas fluorescens inactivation and related to activation of intracellular antioxidant defense system and regulation of genes expression related to amino acid metabolism and energy metabolism, which promoting cellular process, catalytic activity and other biochemical pathways.


Asunto(s)
Gases em Plasma , Pseudomonas fluorescens , Especies Reactivas de Oxígeno , Pseudomonas fluorescens/metabolismo , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Microbiología del Agua , Viabilidad Microbiana/efectos de los fármacos
6.
Foods ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731666

RESUMEN

An appropriate drying method is crucial for producing high-quality dried apricots. In this study, the effects of four drying methods, hot air drying (HAD), infrared drying (IRD), pulse vacuum drying (PVD), and vacuum freeze-drying (VFD), on the drying kinetics and physical and nutritional characteristics of apricot slices were evaluated. PVD required the shortest time (16.25 h), followed by IRD (17.54 h), HAD (21.39 h), and VFD (34.64 h). VFD resulted in the best quality of apricot slices, with the smallest color difference (ΔE = 13.64), lowest water activity (0.312 ± 0.015) and browning degree (0.35), highest color saturation (62.84), lowest hardness (8.35 ± 0.47 N) and shrinkage (9.13 ± 0.65%), strongest rehydration ability (3.58 ± 0.11 g/g), a good microstructure, and high nutrient-retention rates (ascorbic acid content: 53.31 ± 0.58 mg/100 g, total phenolic content: 12.64 ± 0.50 mg GAE/g, and carotenoid content: 24.23 ± 0.58 mg/100 g) and antioxidant activity (DPPH: 21.10 ± 0.99 mmol Trolox/g and FRAP: 34.10 ± 0.81 mmol Trolox/g). The quality of PVD-treated apricot slices was second-best, and the quality of HAD-treated apricot slices was the worst. However, the energy consumption required for VFD was relatively high, while that required for PVD was lower. The results of this study provide a scientific basis for the large-scale industrial production of dried apricots.

7.
Food Chem ; 449: 139244, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583397

RESUMEN

This study aimed to investigate the effects of edible gum addition on moisture changes in freeze-dried restructured strawberry blocks (FRSB), which involved five groups: the control, 1.2% guar gum, 1.2% gelatin, 1.2% pectin, and the composite group with 0.5% guar gum, 0.5% gelatin, and 0.45% pectin. The results indicated that the drying rates of the five groups of FRSB presented similar early acceleration and later deceleration trends. Moisture content in FRSB was linearly predicted by peak area of low field nuclear magnetic resonance with R2 higher than 0.90 for all the five groups. The FRSB samples in the gelatin and composition groups formed a denser porous structure and had a lower hygroscopicity after four days of storage. This study provides a theoretical basis for controlling the processing of FRSB.


Asunto(s)
Fragaria , Liofilización , Galactanos , Gelatina , Mananos , Pectinas , Gomas de Plantas , Agua , Galactanos/química , Gomas de Plantas/química , Mananos/química , Gelatina/química , Pectinas/química , Fragaria/química , Agua/química , Frutas/química
8.
Food Chem X ; 22: 101299, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38559442

RESUMEN

In current work, the effect of freezing (F), ultrasound (U), and freeze- ultrasound (FU) pretreatment on infrared combined with hot air impingement drying kinetics, cell ultrastructure, enzyme activity, and physicochemical properties of strawberry slices were explored. Results showed that FU pretreatment enhanced cell membrane permeability via forming micropores, altered water status by transforming bound water into free water and thus promoted moisture diffusivity and decreased drying time by 50% compared to the control group. FU pretreatment also extensively decreased pectin methylesterase enzyme activity and maintained quality. The contents of total phenols, anthocyanins, vitamin C, antioxidant activity, and a* value of dried strawberries pretreated by FU were extensively increased compared to the control group. U and FU pretreatments were beneficial for retaining aromatic components and organic sulfides according to e-nose analyses. The findings indicate that FU is a promising pretreatment technique as it enhances drying process and quality of strawberry slices.

9.
Front Plant Sci ; 15: 1289783, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501134

RESUMEN

To monitor the moisture content of agricultural products in the drying process in real time, this study applied a model combining multi-sensor fusion and convolutional neural network (CNN) to moisture content online detection. This study built a multi-sensor data acquisition platform and established a CNN prediction model with the raw monitoring data of load sensor, air velocity sensor, temperature sensor, and the tray position as input and the weight of the material as output. The model's predictive performance was compared with that of the linear partial least squares regression (PLSR) and nonlinear support vector machine (SVM) models. A moisture content online detection system was established based on this model. Results of the model performance comparison showed that the CNN prediction model had the optimal prediction effect, with the determination coefficient (R2) and root mean square error (RMSE) of 0.9989 and 6.9, respectively, which were significantly better than those of the other two models. Results of validation experiments showed that the detection system met the requirements of moisture content online detection in the drying process of agricultural products. The R2 and RMSE were 0.9901 and 1.47, respectively, indicating the good performance of the model combining multi-sensor fusion and CNN in moisture content online detection for agricultural products in the drying process. The moisture content online detection system established in this study is of great significance for researching new drying processes and realizing the intelligent development of drying equipment. It also provides a reference for online detection of other indexes in the drying process of agricultural products.

10.
Foods ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338569

RESUMEN

In this paper, the effects on drying time (Y1), the color difference (Y2), unit energy consumption (Y3), polysaccharide content (Y4), rehydration ratio (Y5), and allantoin content (Y6) of yam slices were investigated under different drying temperatures (50-70 °C), slice thicknesses (2-10 mm), and radiation distances (80-160 mm). The optimal drying conditions were determined by applying the BP neural network wolf algorithm (GWO) model based on response surface methodology (RMS). All the above indices were significantly affected by drying conditions (p < 0.05). The drying rate and effective water diffusion coefficient of yam slices accelerated with increasing temperature and decreasing slice thickness and radiation distance. The selection of lower temperature and slice thickness helped reduce the energy consumption and color difference. The polysaccharide content increased and then decreased with drying temperature, slice thickness, and radiation distance, and it was highest at 60 °C, 6 mm, and 120 mm. At 60 °C, lower slice thickness and radiation distance favored the retention of allantoin content. Under the given constraints (minimization of drying time, unit energy consumption, color difference, and maximization of rehydration ratio, polysaccharide content, and allantoin content), BP-GWO was found to have higher coefficients of determination (R2 = 0.9919 to 0.9983) and lower RMSEs (reduced by 61.34% to 80.03%) than RMS. Multi-objective optimization of BP-GWO was carried out to obtain the optimal drying conditions, as follows: temperature 63.57 °C, slice thickness 4.27 mm, radiation distance 91.39 mm, corresponding to the optimal indices, as follows: Y1 = 133.71 min, Y2 = 7.26, Y3 = 8.54 kJ·h·kg-1, Y4 = 20.73 mg/g, Y5 = 2.84 kg/kg, and Y6 = 3.69 µg/g. In the experimental verification of the prediction results, the relative error between the actual and predicted values was less than 5%, proving the model's reliability for other materials in the drying technology process research to provide a reference.

11.
Food Chem X ; 21: 101238, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38420506

RESUMEN

Durian contains rich flavor components that undergo complex changes during drying. In this study, durian was subjected to integrated freeze-drying (IFD), conventional freeze-drying (CFD), and hot air drying (AD). Compared with the fresh samples, those dried by IFD, CFD, and AD lost 11, 9, and 7 original volatile compounds, respectively, and generated 7, 6, and 8 new volatile compounds, respectively, and showed a rapid and then slow decreasing trend in the total content during drying. However, the types of amino acids and soluble sugars remained unchanged during each of the drying methods. Furthermore, volatile compounds showed a significant negative correlation with the majority of amino acids and a significant positive correlation with soluble sugars. The IFD samples had the highest content of volatile compounds, amino acids, and soluble sugars. Therefore, IFD is recommended as a preferable drying method for durian.

12.
Chemosphere ; 353: 141564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417490

RESUMEN

In recent years, the atmospheric pollution caused by phthalate esters (PAEs) has been increasing due to the widespread use of PAE-containing materials. Existing research on atmospheric PAEs lacks long-term continuous observation and samples from cities in central China. To investigate the pollution characteristics, sources, and health risks of PAEs in the ambient air of a typical city in central China, daily PM2.5 samples were collected in Nanchang from November 2020 to October 2021. In this study, the detection and quantification of six significant PAE contaminants, namely diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), Di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisodecyl phthalate (DIDP), were accomplished using gas chromatography and mass spectrometry. The results revealed that the concentrations of DEP, DnBP, DEHP, and DnOP were relatively high. Higher temperatures promote the volatilization of PAEs, leading to an increase in the gaseous and particulate PAE concentrations in warm seasons and winter pollution scenarios. The results of principal component analysis show that PAEs mainly come from volatile products and polyvinylchloride plastics. Using positive matrix factorization analysis, it is shown that these two sources contribute 67.0% and 33.0% in atmosphere PAEs, respectively. Seasonally, the contribution of volatile products to both gaseous and particulate PAEs substantially increases during warm seasons. The residents in Nanchang exposed to PAEs have a negligible non-cancer risk and a potential low cancer risk. During the warm seasons, more PAEs are emitted into the air, which will increase the toxicity of PAEs and their impact on human health.


Asunto(s)
2,4-Dinitrofenol/análogos & derivados , Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Dietilhexil Ftalato/análisis , Cromatografía de Gases y Espectrometría de Masas , Ácidos Ftálicos/análisis , Dibutil Ftalato/análisis , Polvo/análisis , China , Ésteres/análisis
13.
Sci Total Environ ; 922: 171265, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417516

RESUMEN

The role of agricultural versus vehicle emissions in urban atmospheric ammonia (NH3) remains unclear. The lockdown due to the outbreak of COVID-19 provided an opportunity to assess the role of source emissions on urban NH3. Concentrations and δ15N of aerosol ammonium (NH4+) were measured before (autumn in 2017) and during the lockdown (summer, autumn, and winter in 2020), and source contributions were quantified using SIAR. Despite the insignificant decrease in NH4+ concentrations, significantly lower δ15N-NH4+ was found in 2020 (0.6 ± 1.0‰ in PM2.5 and 1.4 ± 2.1‰ in PM10) than in 2017 (15.2 ± 6.7‰ in PM2.5), which indicates the NH3 from vehicle emissions has decreased by∼50% during the lockdown while other source emissions are less affected. Moreover, a reversed seasonal pattern of δ15N-NH4+ during the lockdown in Changsha has been revealed compared to previous urban studies, which can be explained by the dominant effect of non-fossil fuel emissions due to the reductions of vehicle emissions during the lockdown period. Our results highlight the effects of lockdown on aerosol δ15N-NH4+ and the importance of vehicle emissions to urban atmospheric NH3, providing conclusive evidence that reducing vehicle NH3 emissions could be an effective strategy to reduce PM2.5 in Chinese megacities.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Compuestos de Amonio/análisis , Isótopos de Nitrógeno/análisis , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Aerosoles y Gotitas Respiratorias , Amoníaco/análisis , Material Particulado/análisis , China
14.
Heliyon ; 10(1): e24091, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38234906

RESUMEN

Objective: As an important chemotherapy drug, cisplatin has been widely used in the treatment of many cancers. However, many patients, including oral squamous cell carcinoma (OSCC) patients, experience unacceptable outcomes from cisplatin treatment. Thus, we devised a risk model for predicting the sensitivity of OSCC patients to cisplatin treatment, to provide a reference for clinical practice. Methods: CAL-27 and SCC-9 cell lines treated or not with cisplatin and data from The Cancer Genome Atlas (TCGA) were screened for simultaneously and significantly differentially expressed genes. Next, we built a risk model for predicting cisplatin sensitivity in OSCC patients. Reverse transcription-polymerase chain reaction (RT-PCR), pathological samples and clinical data were used to examine the reliability of the model. Results: ANKRD2 and TNFRSF19 were differentially expressed between the OSCC metastasis cell line HSC-3 treated and not treated with cisplatin, as well as between the OSCC cell line SCC-25 and the cell line SCC25-DDP, which has cisplatin chemoresistance. We found that the expression of ANKRD2 and TNFRSF19 had a significant influence on the prognosis of OSCC patients. The risk model that combined ANKRD2 and TNFRSF19 to predict sensitivity to cisplatin in OSCC patients was confirmed by analysing the pathological samples and follow-up information of clinical patients. Conclusions: The expression of ANKRD2 and TNFRSF19 is associated with cisplatin sensitivity and prognosis in patients with OSCC. The survival outcome of patients with oral squamous cell carcinoma (OSCC) was found to be significantly worse in those with high expression of ANKRD2 combined with low expression of TNFRSF19. ANKRD2 and TNFRSF19 may be targets for cisplatin sensitivity prediction in OSCC patients. These findings may provide novel strategies for overcoming cisplatin resistance.

15.
Heliyon ; 10(1): e23617, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192809

RESUMEN

Objective: The purpose of this study was to analyze the impact of Shaoyao-Gancao decoction (SGD) on proteins with significant changes in the dorsal root ganglion (DRG) in rats and to explore the role of the Semaphorin 3G (Sema3G) protein in the DRG and its downstream factors, interleukin-6 (IL-6) and CC-motif chemokine ligand 2(CCL2), in the treatment of chronic inflammatory pain (CIP). Methods: We created a CIP rat model using 100 µL of complete Freund's adjuvant (CFA) that was injected into the left posterior plantar of rats. Then, we administered SGD intragastrically. We tested the animals for behavioral changes and protein expression levels in DRG pre- and post-drug intervention. Results: Rats in the SGD group showed significantly increased paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and relative expression levels of the Sema3G protein in the DRG (all P < 0.05), while the relative mRNA expression levels of IL-6 and CCL2 in the DRG of the rats were significantly decreased (P < 0.05) when compared with the model group. Conclusion: In this study, we found that Shaoyao-Gancao decoction was effective in improving the PWT and PWL of rats with CIP. It reduced CIP by upregulating the expression of Sema3G in the DRG and inhibiting the relative mRNA expression levels of IL-6 and CCL2.

16.
Food Chem ; 442: 138489, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38278104

RESUMEN

In current work, the effect of ripening stages (I, II, and III) on pulsed vacuum drying (PVD) behavior of goji berry was explored. The shortest drying time of goji berry was observed at stage I (6.99 h) which was 13.95 %, and 28.85 % shorter than those at stages II, and III, respectively. This phenomenon was closely associated with the ripening stage, as contributed by the initial physiochemical differences, ultrastructure alterations, and moisture distribution. In addition, lower maturity suffered more severe browning, primarily due to the enzymatic and non-enzymatic reactions of phenolics, followed by pigment degradation and the Maillard reaction. Additionally, the PVD process promoted the rupture and transformation of the pectin fractions, also causing browning either directly or indirectly through participation in other chemical reactions. These findings suggest that the appropriate ripening stage of goji berry should be considered as having a significant impact on drying behaviors and quality attributes.


Asunto(s)
Lycium , Lycium/química , Vacio
17.
J Food Sci ; 89(1): 202-216, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38078765

RESUMEN

Vacuum steam pulsed blanching (VSPB) was employed as a novel blanching technology on Cornus officinalis to soften the tissue for subsequent coring and dehydration. The current work aims to explore its effect on mass transfer behavior, PPO inactivation, drying characteristics, physicochemical properties, antioxidant capacity, and microstructure of C. officinalis. Results showed that VSPB increased water loss, decreased solid gain, and increased weight reduction with increased blanching cycles. Besides, VSPB significantly changed physical properties and extensively reduced drying time which was attributed to the cell wall components dissolving and cell turgor pressure decreasing, also verified by observing microstructure alteration. PPO was completely denatured after blanching in 6 cycles, but phenolic compounds were still diffused or degraded. Notably, the content of flavonoids and antioxidant capacity significantly increased compared to fresh samples probably due to increased extractability caused by the disrupting cell structure. Besides, the carotenoids and ascorbic acid could be well preserved.


Asunto(s)
Cornus , Vapor , Antioxidantes/química , Vacio , Agua/química , Desecación/métodos
18.
Sci Total Environ ; 912: 169216, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38092198

RESUMEN

Nonpolar organic compounds (NPOCs) are found in atmospheric aerosols and have significant implications for environmental and human health. Although many studies have quantitatively estimated the sources of NPOCs in different cities, few have evaluated their main influencing factors (e.g., emissions and meteorological conditions) at relatively long (e.g., different seasons) and short timescales (e.g., several days during pollution episodes). A better understanding of this issue could optimise strategies for dealing with organic contamination in atmospheric particulate matter. NPOCs (including n-alkanes, PAHs and hopanes) in fine particulate matter (PM2.5) were sampled daily at Nanchang, China, from 1 November 2020 to 31 October 2021. Analyses of specific biomarkers and diagnostic ratios indicate that the NPOCs mainly had anthropogenic sources. The quantitative estimates of a positive matrix factorization model show that fossil fuel and biomass combustion were the main sources of n-alkanes (contributing 64.8 %), while vehicle exhaust was the main source of PAHs (47.0 %) and hopanes (52.3 %). Seasonally, the contributions from coal and/or biomass combustion were higher in autumn and winter (40.2-56.3 %) than in spring and summer (25.7-44.3 %), while contributions from natural plants, petroleum volatilization and vehicle exhaust were higher in spring and summer (14.7-63.5 %) than in autumn and winter (8.1-48.9 %). Redundancy analysis shows that increased emissions, especially from coal and/or biomass combustion, are the main cause of increases in NPOCs, during both annual sampling periods and winter pollution episodes. Over the year, higher temperature and longer sunshine hours correspond to lower NPOC concentrations. In winter pollution episodes, increases in temperature and relative humidity correspond to increases in NPOC concentrations. Our results suggest that controlling primary emissions, especially from coal and biomass combustion, may be an effective way to prevent increases in NPOC concentrations.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Humanos , Contaminantes Atmosféricos/análisis , Estaciones del Año , Monitoreo del Ambiente , Material Particulado/análisis , China , Emisiones de Vehículos/análisis , Compuestos Orgánicos/análisis , Carbón Mineral/análisis , Aerosoles/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Triterpenos Pentacíclicos/análisis , Alcanos/análisis
19.
J Hazard Mater ; 465: 133066, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38042007

RESUMEN

Incorrect use of neonicotinoid pesticides poses a serious threat to human and pollinator health, as these substances are commonly present in bee products and even drinking water. To combat this threat, the study developed a new method of degrading the pesticide imidacloprid using surface discharge cold plasma oxidation technology. The study showed that this method achieved a very high efficiency of imidacloprid degradation of 91.4%. The main reactive oxygen species (H2O2, O3, ·OH, O2-, 1O2) effectively participated in the decomposition reaction of imidacloprid. Reactive oxygen species were more sensitive to the structure of the nitroimine group. Density functional theory (DFT) further explored the sites of reactive oxygen species attack on imidacloprid and revealed the process of energy change of attacking imidacloprid. In addition, a degradation pathway for imidacloprid was proposed, mainly involving reactive oxygen species chemisorption, a ring-opening intermediate, and complete cleavage of the nitroimine group structure. Model predictions indicated that acute oral and developmental toxicity were significantly reduced after cold plasma treatment, as confirmed by insect experiments. Animal experiments have shown that plasma treatment reduces imidacloprid damage to mice hippocampal tissue structure and inhibits the reduction of brain-derived neurotrophic factor content, thus revealing the detoxification mechanism of the body.


Asunto(s)
Insecticidas , Plaguicidas , Gases em Plasma , Humanos , Abejas , Animales , Ratones , Insecticidas/química , Especies Reactivas de Oxígeno , Estructura Molecular , Peróxido de Hidrógeno , Neonicotinoides/química , Nitrocompuestos/química , Nitrocompuestos/farmacología
20.
Eur Radiol ; 34(1): 355-366, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37528301

RESUMEN

OBJECTIVES: To determine whether the texture feature analysis of multi-phase abdominal CT can provide a robust prediction of benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in renal tumor. METHODS: A total of 1051 participants with renal tumor were split into the internal cohort (850 patients from four different hospitals) and the external testing cohort (201 patients from another local hospital). The proposed framework comprised a 3D-kidney and tumor segmentation model by 3D-UNet, a feature extractor for the regions of interest based on radiomics and image dimension reduction, and the six classifiers by XGBoost. A quantitative model interpretation method called SHAP was used to explore the contribution of each feature. RESULTS: The proposed multi-phase abdominal CT model provides robust prediction for benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in the internal validation set, with the AUROC values of 0.88 ± 0.1, 0.90 ± 0.1, 0.91 ± 0.1, 0.89 ± 0.1, 0.84 ± 0.1, and 0.88 ± 0.1, respectively. The external testing set also showed impressive results, with AUROC values of 0.83 ± 0.1, 0.83 ± 0.1, 0.85 ± 0.1, 0.81 ± 0.1, 0.79 ± 0.1, and 0.81 ± 0.1, respectively. The radiomics feature including the first-order statistics, the tumor size-related morphology, and the shape-related tumor features contributed most to the model predictions. CONCLUSIONS: Automatic texture feature analysis of abdominal multi-phase CT provides reliable predictions for multi-tasks, suggesting the potential usage of clinical application. CLINICAL RELEVANCE STATEMENT: The automatic texture feature analysis framework, based on multi-phase abdominal CT, provides robust and reliable predictions for multi-tasks. These valuable insights can serve as a guiding tool for clinical diagnosis and treatment, making medical imaging an essential component in the process. KEY POINTS: • The automatic texture feature analysis framework based on multi-phase abdominal CT can provide more accurate prediction of benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in renal tumor. • The quantitative decomposition of the prediction model was conducted to explore the contribution of the extracted feature. • The study involving 1051 patients from 5 medical centers, along with a heterogeneous external data testing strategy, can be seamlessly transferred to various tasks involving new datasets.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Antígeno Ki-67 , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/cirugía , Neoplasias Renales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA