Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34578516

RESUMEN

In the direct current electric field, the surface of epoxy resin (EP) insulating material is prone to charge accumulation, which leads to electric field distortion and damages the overall insulation of the equipment. Nano-doping is an effective method to improve the surface insulation strength and DC flashover voltage of epoxy resin composites. In this study, pure bismuth ferrite nanoparticles (BFO), as well as BFO nanofillers, which were doped by La element, Cr element as well as co-doped by La + Cr element, were prepared by the sol-gel method. Epoxy composites with various filler concentrations were prepared by blending nano-fillers with epoxy resin. The morphology and crystal structure of the filler were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) tests. The effects of different filler types and filler mass fraction on the surface flashover voltage, charge dissipation rate, and trap characteristics of epoxy resin composites were studied. The results showed that element doping with bismuth ferrite nanofillers could further increase the flash voltage of the composites. The flashover voltage of La + Cr elements co-doped composites with the filler mass fraction of 4 wt% was 45.2% higher than that of pure epoxy resin. Through data comparison, it is found that the surface charge dissipation rate is not the only determinant of the flashover voltage. Appropriately reducing the surface charge dissipation rate of epoxy resin composites can increase the flashover voltage. Finally, combining with the distribution characteristics of the traps on the surface of the materials to explain the mechanism, it is found that the doping of La element and Cr element can increase the energy level depth and density of the deep traps of the composite materials, which can effectively improve the flashover voltage along the surface of the epoxy resin.

2.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065258

RESUMEN

Traditional epoxy resin (EP) materials have difficulty to meet the performance requirements in the increasingly complex operating environment of the electrical and electronic industry. Therefore, it is necessary to study the design and development of new epoxy composites. At present, fluorinated epoxy resin (F-EP) is widely used, but its thermal and mechanical properties cannot meet the demand. In this paper, fluorinated epoxy resin was modified by ordered filling of fluorinated graphene oxide (FGO). The effect of FGO interlayer spacing on the thermal and mechanical properties of the composite was studied by molecular dynamics (MD) simulation. It is found that FGO with ordered filling can significantly improve the thermal and mechanical properties of F-EP, and the modification effect is better than that of FGO with disordered filling. When the interlayer spacing of FGO is about 9 Å, the elastic modulus, glass transition temperature, thermal expansion coefficient, and thermal conductivity of FGO are improved with best effect. Furthermore, we calculated the micro parameters of different systems, and analyzed the influencing mechanism of ordered filling and FGO layer spacing on the properties of F-EP. It is considered that FGO can bind the F-EP molecules on both sides of the nanosheets, reducing the movement ability of the molecular segments of the materials, so as to achieve the enhancement effect. The results can provide new ideas for the development of high-performance epoxy nanocomposites.

3.
J Mol Graph Model ; 107: 107961, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34119953

RESUMEN

Epoxy resin (EP) has been extensively used in the field of insulation for its excellent electrical strength, mechanical property, chemical stability, and low cost. In this paper, computer molecular simulation is used to analyze the influence of nano-POSS (Nano-Polyhedral Oligomericsils Esquioxane) doping on the properties of epoxy composite from the micro point of view, which can provide a scientific basis for the optimization of the epoxy system. Two kinds of nano-POSS fillers with different mass fractions were doped into the base material of diglycidyl ether of bisphenol A (DGEBA) and 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecar (OSC). By molecular dynamics (MD) simulation the influence of nanofillers on the microstructure, thermal and mechanical properties of the composite were analyzed. Simulation results show that the doping of nano-POSS can improve the thermal and mechanical properties of the epoxy composite. Different nano-POSS has little effect on the glass transition temperature (Tg), coefficient of thermal expansion (CTE), and mechanical properties of the epoxy system, while the filling amount has an obvious improvement effect. Compared with EP/methyl-POSS system, the thermal and mechanical properties of the EP/phenyl-POSS system are better. At the same time, the doping of nano-POSS changed the microstructure parameters of epoxy composite. With the increase of nano-POSS filler content, fractional free volume (FFV) and mean square displacement (MSD) of both EP/POSS systems increased after the first drop. Besides, when the content of nano-POSS exceeded a certain range, the aggregation of filler itself hindered the accumulation of epoxy molecular chain segments.


Asunto(s)
Doping en los Deportes , Resinas Epoxi , Temperatura , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA