Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Prod Bioprospect ; 14(1): 44, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133435

RESUMEN

Xiaoyankangjun tablet (XYKJP) is a traditional Chinese medicine formulation used to treat intestinal disorders in clinical practice. However, the specific therapeutic mechanism of action of XYKJP in colitis has not yet been elucidated. This study aimed to reveal the multifaceted mechanisms of action of XYKJP in treating colitis. The model established based on DSS-induced colitis in C57BL/6 mice was employed to estimate the effect of XYKJP on colitis, which was then followed by histological assessment, 16S rRNA sequencing, RT-qPCR, ELISA, and Western blot. XYKJP alleviated the symptoms of DSS-induced colitis mainly by reducing oxidative stress, inflammatory responses, and intestinal mucosal repair in colitis tissues. In addition, XYKJP regulated the intestinal flora by increasing the relative abundance of Akkermansia and Bifidobacterium and reducing the relative abundance of Coriobacteriaceae_UCG-002. Mechanistically, XYKJP increased the content of short-chain fatty acids (SCFAs) in the feces, particularly propanoic acid and butyric acid, activated their specific receptor GPR43/41, furthermore activated the Nrf2/HO-1 pathway, and suppressed the JAK2/STAT3 pathway. XYKJP significantly alleviated the symptoms of experimental colitis and functioned synergistically by regulating the intestinal flora, increasing the production of SCFAs, and activating their specific receptors, thereby repressing oxidative stress and inflammation.

2.
Heliyon ; 10(2): e24339, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38304797

RESUMEN

α-Mangostin is a natural xanthone derivative isolated from Camellia atrophy (CA), commonly known as Lichuan black tea (LBT). The present study investigated the ameliorating effect and mechanism of α-mangostin on alcoholic gastric ulcers (GU) in rats. In vivo, α-mangostin relieved pathological symptoms. Moreover, α-mangostin regulated the activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase 1 (HO-1) and nuclear factor κB (NF-κB)/NLR family pyrin domain containing 3 (NLRP3)/caspase-1 pathways. Reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) were significantly decreased and IL-10 were increased, the microtubule-associated protein light chain 3 (LC3)-II/LC3-I ratio was increased, p62 protein expression was decreased, and inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expression was down-regulated. The relevant mechanisms were validated using GSE-1 and RAW264.7 cells in an in vitro model. Furthermore, α-mangostin increased Ligilactobacillus and Muribaculum abundance as well as propionic acid and butyric acid contents. Therefore, α-mangostin possesses antioxidant and anti-inflammatory properties, and remodels intestinal flora dysbiosis through mechanisms that may involve regulation of the Nrf2/HO-1 pathway and NF-κB/NLRP3/caspase-1 pathway. It also increases propionic acid and butyric acid contents. This study provides novel evidence regarding the use of α-mangostin for treating GU.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA