Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 243: 120346, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482006

RESUMEN

The North China Plain (NCP) has experienced increasingly severe groundwater nitrogen (TN) pollution. However, the factors influencing TN distribution are still poorly understood. Previous studies have identified surface soil nitrogen (TSN) loading and intrinsic groundwater vulnerability (Inv) as the main factors controlling groundwater TN pollution. However, in this study, based on 3245 shallow groundwater samples in the NCP, the multiple regression analysis results(R2=0.105, p<0.001) revealed that the TN was not mainly controlled by TSN and Inv. The lower prediction accuracy indicated the large data dispersion of TN, which might be affected by nitrogen attenuation or accumulation. Thus, the NCP was divided into balance, attenuation, and accumulation zones according to the regression equation. The attenuation zone was mainly distributed in the inter-fan and fan edge parts of the pre-mountain alluvial floodplain, as well as the west and south of the runoff area, while the accumulation zone was mainly distributed in the top part of the pre-mountain alluvial floodplain and the east of discharge area. Multi-indicators comparative analysis showed that compared to the balance (Eh= 76.2 mV) and accumulation (Eh=126.7 mV) zones, the attenuation zone has a stronger reducing environment (Eh=30.8 mV) favorable to denitrification, which can reduce the TN pollution (0.49 mg/L) caused by surface nitrogen input and consume more electron donors. Conversely, the stronger oxidizing environment in the accumulation zone limited denitrification, resulting in higher TN concentrations (19.14 mg/L) in the aquifers under the same TSN and Inv conditions as the other two zones. The standardized effects and significance on each path of the structural equation model (SEMs) fully confirmed the reliability of the above zonal analysis. Importantly, the feature importance (23.6%) of random forest and standardized effects (0.455, p<0.001) of SEMs showed that the Eh had the strongest influence on TN. Thus, the redox conditions of the aquifer, in addition to TSN and Inv, played a crucial role in controlling the TN pollution in the groundwater of a large region. The zoning work and the analysis of influencing factors are important to guide scientific prevention and control of groundwater nitrogen pollution.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitrógeno/análisis , Suelo , Monitoreo del Ambiente , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , China , Nitratos/análisis
2.
Water Res ; 226: 119222, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36274353

RESUMEN

The reuse of reclaimed water (RW) for river ecological restoration in global water-shortage regions has inevitably brought some potential risks for groundwater. However, little is known about the effects of reclaimed water on the hydrochemical evolution of groundwater especially under long-term infiltration conditions. Herein, 11-years monitoring data (2007-2018) of reclaimed water and groundwater were adopted to analyze the characteristics and genesis of groundwater hydrochemical evolution under long-term infiltration of reclaimed water from Jian River to Chaobai River in Beijing. The results showed that the hydrochemical components in groundwater totally performed a significant increase in Na+, Cl-, and K+and decrease in Ca2+, Mg2+, and HCO3- concentration after long-term infiltration of reclaimed water. Meanwhile, a significant hydrochemical evolution difference between the groundwater of Jian River and Chaobai River was observed. In Jian River, the hydrochemical type in groundwater shifted gradually from HCO3-Ca·Mg to the type of HCO3·Cl-Na·Ca approaching reclaimed water. In contrast, the hydrochemical evolution in the Chaobai River shows an obvious opposite trend from HCO3-Ca·Mg to HCO3·Cl-Na·Mg and finally deviating reclaimed water type of Cl·HCO3·SO4-Na. PHREEQC simulation indicated that the differences in hydrochemical evolution were mediated synergically by sediment thickness and geochemical processes (e.g. mixing and sulfate reduction). In such mediators, thinner sediment and strong mixing in the Jian River were confirmed to be the genesis of groundwater hydrochemical evolution progressively approaching reclaimed water. Different from the Jian River, multiple regression analyses revealed that the genesis of groundwater hydrochemical evolution in the Chaobai River was divided into two stages according to the increase of sediment thickness. Reclaimed water quality and infiltration amount are the leading proposed cause in the initial stage (2007-2008) due to thinner sediment formation, contributing 53.5% and 29.8% within the 95% confidence interval, respectively. Subsequently, the rise in sediment thickness is proved to play a crucial role in groundwater hydrochemical evolution trend away from reclaimed water (2009-2018), with a contribution of 41.6% within the 95% confidence interval. It is mainly attributed to the reduced reclaimed water infiltration rate and favorable sulfate reduction conditions. These findings advance our understanding on groundwater hydrochemical evolution under long-term infiltration of reclaimed water and also guide future prediction of evolution trends.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Ríos , Beijing , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Calidad del Agua , Sulfatos , China
3.
Mar Drugs ; 13(8): 4733-53, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26264002

RESUMEN

Penicitrinine A, a novel alkaloid with a unique spiro skeleton, was isolated from a marine-derived fungus Penicillium citrinum. In this study, the isolation, structure and biosynthetic pathway elucidation of the new compound were described. This new compound showed anti-proliferative activity on multiple tumor types. Among them, the human malignant melanoma cell A-375 was confirmed to be the most sensitive. Morphologic evaluation, apoptosis rate analysis, Western blot and real-time quantitative PCR (RT-qPCR) results showed penicitrinine A could significantly induce A-375 cell apoptosis by decreasing the expression of Bcl-2 and increasing the expression of Bax. Moreover, we investigated the anti-metastatic effects of penicitrinine A in A-375 cells by wound healing assay, trans-well assay, Western blot and RT-qPCR. The results showed penicitrinine A significantly suppressed metastatic activity of A-375 cells by regulating the expression of MMP-9 and its specific inhibitor TIMP-1. These findings suggested that penicitrinine A might serve as a potential antitumor agent, which could inhibit the proliferation and metastasis of tumor cells.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Organismos Acuáticos/metabolismo , Penicillium/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Proteína X Asociada a bcl-2/metabolismo
4.
Chem Pharm Bull (Tokyo) ; 62(9): 942-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24966178

RESUMEN

A rare hexacyclic oxindole alkaloid, speradine F (1), together with two novel tetracyclic oxindole alkaloids, speradines G (2) and H (3), were isolated from the marine-derived fungus Aspergillus oryzae. Their structures were determined by spectroscopic methods and X-ray diffraction analysis. This study is the first report on cyclopiazonic acid (CPA)-type alkaloids with a hexacyclic skeleton.


Asunto(s)
Alcaloides/aislamiento & purificación , Aspergillus oryzae/química , Indoles/química , Biología Marina , Alcaloides/química , Fermentación , Modelos Moleculares , Espectroscopía de Protones por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA