Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 262(Pt 2): 119970, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260719

RESUMEN

Riverine carbon dioxide (CO2) exchange is a crucial component of the global carbon cycle. However, the changes in the CO2 sink/source in karst rivers caused by differences in lithological features and climate, hindered the resolution of the spatio-temporal heterogeneity of global inland water carbon emissions. Here, we use hydrochemical data and CO2 gas isotopic data to reveal the spatio-temporal variations of CO2 sink/source in karst rivers and their controlling mechanisms. Fifty-two monitoring transects were set up in the subtropical Lijiang River in southwest China in June and December 2019. Our results indicated that the CO2 flux across the water-air interface (FCO2) in the Lijiang River basin ranged from -43.77 to 519.67 mmol/(m2·d). In June, the Lijiang River acted as an atmospheric carbon source due to higher water temperatures (Twater). However, driven by hydrodynamic conditions and the metabolism of aquatic photosynthesis, the river shifts from being an atmospheric carbon source in June to an atmospheric carbon sink in December. The stable isotopes of CO2 (δ13C-CO2) show significant differences in the spatio-temporal variations of CO2 sink/source. In December, the transects of the Lijiang River basin with a negative CO2 flux are significantly negatively correlated with dissolved oxygen (DO) and chlorophyll-a (Chl-a) concentration (p < 0.05). This confirms that the enhancement of aquatic photosynthesis efficiency increased water DO concentrations, which resulted in the positive movement of water δ13C-CO2 and a decrease in the partial pressure of CO2 (pCO2) and FCO2. Comparative analysis with global river FCO2 indicates that under the combined driving forces of metabolic processes of aquatic photosynthetic organisms and hydrodynamic conditions, rivers tend to act more frequently as CO2 sinks, particularly in subtropical and temperate rivers. In conclusion, this study represents a new example focusing on CO2 dynamics to address the spatio-temporal heterogeneity of carbon emissions in inland waters on a global scale.

2.
Environ Res ; 252(Pt 3): 119041, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704013

RESUMEN

Under the influence of periodic temperature variations, biogeochemical cycling in water bodies is markedly affected by the periodic thermal stratification processes in subtropical reservoirs or lakes. In current studies, there is insufficient research on the influence and mechanism of dissolved inorganic carbon (DIC) distribution in karst carbon-rich groundwater-fed reservoirs under the coupled effects of thermal structure stratification and the biological carbon pump (BCP) effect. To address this issue, the Dalongdong (DLD) reservoir in the subtropical region of southern China was chosen as the site for long-term monitoring and research on relevant physicochemical parameters of water, DIC, and its stable carbon isotope (δ13CDIC), CO2 emission flux, as well as the reservoir's thermal stratification index. The results show that: (1) the DLD reservoir is a typical warm monomictic reservoir, which exhibits regular variations of mixing period-stratification period-mixing period on a yearly scale due to thermal structure changes; (2) DIC was consumed by aquatic photosynthetic organisms in the epilimnion during the stratification period, leading to a decrease in DIC concentration, partial pressure of CO2 (pCO2) and CO2 emission flux, and an increase in stable carbon isotope (δ13CDIC). During the mixing period, the trend was reversed; (3) During the thermal stratification, aquatic photosynthesis and water temperature were the primary factors controlling DIC variations in both the epilimnion and thermocline. Regarding the hypolimnion, calcite dissolution, organic matter decomposition, and water temperature were the dominant controlling factors. These results indicate that although carbon-rich karst groundwater provides a plentiful supply of DIC in the DLD reservoir, its availability is still influenced by variations in the reservoir's thermal structure and the metabolic processes of aquatic photosynthetic organisms. Therefore, to better estimate the regional carbon budget in a reservoir or lake, future studies should especially consider the combined effects of BCP and thermal structure variations on carbon variations.


Asunto(s)
Agua Subterránea , Fotosíntesis , Temperatura , Agua Subterránea/química , China , Carbono/química , Carbono/análisis , Monitoreo del Ambiente/métodos , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Isótopos de Carbono/análisis
3.
Environ Res ; 251(Pt 1): 118552, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417662

RESUMEN

Revealing the magnitude, dynamics, and influencing factors of CO2 emissions across the water-air interface in karst water with high frequency is crucial for accurately assessing the carbon budget in a karst environment. Due to the limitations of observation methods, the current research is still very insufficient. To solve the above problems and clarify the main influencing factors of CO2 emission in karst water, this study selected Dalongdong (DLD) Reservoir, located in the typical karst peak and valley area in southwest China, to carry out a multi-parameter high-frequency monitoring study from January to December 2021, and used the thin boundary model method to estimate the CO2 flux across the water-air interface (CF). The average annual flux of DLD reservoir is 84.48 mmol·(m2·h)-1, which represents a CO2 source overall. However, during the stratification period in August, there is a transient carbon sink due to negative CO2 emission. The alteration of thermal stratification in water is crucial in regulating the seasonal variation of CF. Meanwhile, the diurnal variation is significantly influenced by changes in hydrochemical parameters during the thermal stratification stage. Compared to low wind speeds (<3 m/s), high wind speeds (≥3 m/s) have a greater impact on the CO2 flux. Furthermore, high-frequency continuous data revealed that the reservoir triggered a CO2 pulse emission during the turnover process, primarily at night, leading to unusually high CO2 flux values. It is of great significance to monitor and reveal the process, flux, and control factors of CO2 flux in land water at a high-frequency strategy. They will help improve the accuracy of regional or watershed carbon budgets and clarify the role of global land water in the global carbon budget.


Asunto(s)
Dióxido de Carbono , Monitoreo del Ambiente , Agua Subterránea , Dióxido de Carbono/análisis , China , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Agua Subterránea/análisis , Estaciones del Año , Contaminantes Atmosféricos/análisis , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA