Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JASA Express Lett ; 4(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376374

RESUMEN

Coherent processing in synthetic aperture sonar (SAS) requires platform motion estimation and compensation with sub-wavelength accuracy for high-resolution imaging. Micronavigation, i.e., through-the-sensor platform motion estimation, is essential when positioning information from navigational instruments is absent or inadequately accurate. A machine learning method based on variational Bayesian inference has been proposed for unsupervised data-driven micronavigation. Herein, the multiple-input multiple-output arrangement of a multi-band SAS system is exploited and combined with a hierarchical variational inference scheme, which self-supervises the learning of platform motion and results in improved micronavigation accuracy.

2.
JASA Express Lett ; 3(2): 022401, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36858982

RESUMEN

Non-localized impulsive sources are ubiquitous in underwater acoustic applications. However, analytical expressions of their acoustic field are usually not available. In this work, far-field analytical solutions of the non-homogeneous scalar Helmholtz and wave equations are developed for a class of spatially extended impulsive sources. The derived expressions can serve as benchmarks to verify the accuracy of numerical solvers.

3.
J Acoust Soc Am ; 151(2): 1104, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35232100

RESUMEN

Synthetic aperture sonar (SAS) provides high-resolution acoustic imaging by processing coherently the backscattered signal recorded over consecutive pings as the bearing platform moves along a predefined path. Coherent processing requires accurate estimation and compensation of the platform's motion for high quality imaging. The motion of the platform carrying the SAS system can be estimated by cross-correlating redundant recordings at successive pings due to the spatiotemporal coherence of statistically homogeneous backscatter. This data-driven approach for estimating the motion of the SAS platform is essential when positioning information from navigational instruments is absent or inadequately accurate. Herein, the problem of platform motion estimation from coherence measurements of diffuse backscatter is formulated in a probabilistic framework. A variational autoencoder is designed to disentangle the ping-to-ping platform displacement from three-dimensional (3D) spatiotemporal coherence measurements. Unsupervised representation learning from unlabeled data offers robust 3D platform motion estimation. Including a small amount of labeled data during training improves further the platform motion estimation accuracy.

4.
J Acoust Soc Am ; 146(3): 1839, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31590514

RESUMEN

Synthetic aperture sonar (SAS) provides high-resolution acoustic imaging by processing coherently the backscattered acoustic signal recorded over consecutive pings. Traditionally, object detection and classification tasks rely on high-resolution seafloor mapping achieved with widebeam, broadband SAS systems. However, aspect- or frequency-specific information is crucial for improving the performance of automatic target recognition algorithms. For example, low frequencies can be partly transmitted through objects or penetrate the seafloor providing information about internal structure and buried objects, while multiple views provide information about the object's shape and dimensions. Sub-band and limited-view processing, though, degrades the SAS resolution. In this paper, SAS imaging is formulated as an ℓ1-norm regularized least-squares optimization problem which improves the resolution by promoting a parsimonious representation of the data. The optimization problem is solved in a distributed and computationally efficient way with an algorithm based on the alternating direction method of multipliers. The resulting SAS image is the consensus outcome of collaborative filtering of the data from each ping. The potential of the proposed method for high-resolution, narrowband, and limited-aspect SAS imaging is demonstrated with simulated and experimental data.

5.
J Acoust Soc Am ; 143(6): 3912, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29960460

RESUMEN

Speech localization and enhancement involves sound source mapping and reconstruction from noisy recordings of speech mixtures with microphone arrays. Conventional beamforming methods suffer from low resolution, especially with a limited number of microphones. In practice, there are only a few sources compared to the possible directions-of-arrival (DOA). Hence, DOA estimation is formulated as a sparse signal reconstruction problem and solved with sparse Bayesian learning (SBL). SBL uses a hierarchical two-level Bayesian inference to reconstruct sparse estimates from a small set of observations. The first level derives the posterior probability of the complex source amplitudes from the data likelihood and the prior. The second level tunes the prior towards sparse solutions with hyperparameters which maximize the evidence, i.e., the data probability. The adaptive learning of the hyperparameters from the data auto-regularizes the inference problem towards sparse robust estimates. Simulations and experimental data demonstrate that SBL beamforming provides high-resolution DOA maps outperforming traditional methods especially for correlated or non-stationary signals. Specifically for speech signals, the high-resolution SBL reconstruction offers not only speech enhancement but effectively speech separation.


Asunto(s)
Acústica , Ruido/efectos adversos , Localización de Sonidos , Acústica del Lenguaje , Medición de la Producción del Habla/métodos , Calidad de la Voz , Acústica/instrumentación , Teorema de Bayes , Femenino , Humanos , Masculino , Espectrografía del Sonido , Inteligibilidad del Habla
6.
J Acoust Soc Am ; 141(1): 532, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28147626

RESUMEN

This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive-Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-band reconstruction possible. Spatially extended sources can also be addressed with C-ESM, although in this case the obtained solution does not recover the spatial extent of the source.

7.
J Acoust Soc Am ; 140(3): 1828, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27914408

RESUMEN

Direction-of-arrival (DOA) estimation refers to the localization of sound sources on an angular grid from noisy measurements of the associated wavefield with an array of sensors. For accurate localization, the number of angular look-directions is much larger than the number of sensors, hence, the problem is underdetermined and requires regularization. Traditional methods use an ℓ2-norm regularizer, which promotes minimum-power (smooth) solutions, while regularizing with ℓ1-norm promotes sparsity. Sparse signal reconstruction improves the resolution in DOA estimation in the presence of a few point sources, but cannot capture spatially extended sources. The DOA estimation problem is formulated in a Bayesian framework where regularization is imposed through prior information on the source spatial distribution which is then reconstructed as the maximum a posteriori estimate. A composite prior is introduced, which simultaneously promotes a piecewise constant profile and sparsity in the solution. Simulations and experimental measurements show that this choice of regularization provides high-resolution DOA estimation in a general framework, i.e., in the presence of spatially extended sources.

8.
J Acoust Soc Am ; 139(2): EL45-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26936583

RESUMEN

A wave expansion method is proposed in this work, based on measurements with a spherical microphone array, and formulated in the framework provided by Compressive Sensing. The method promotes sparse solutions via ℓ1-norm minimization, so that the measured data are represented by few basis functions. This results in fine spatial resolution and accuracy. This publication covers the theoretical background of the method, including experimental results that illustrate some of the fundamental differences with the "conventional" least-squares approach. The proposed methodology is relevant for source localization, sound field reconstruction, and sound field analysis.

9.
J Acoust Soc Am ; 138(4): 2003-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26520284

RESUMEN

For a sound field observed on a sensor array, compressive sensing (CS) reconstructs the direction of arrival (DOA) of multiple sources using a sparsity constraint. The DOA estimation is posed as an underdetermined problem by expressing the acoustic pressure at each sensor as a phase-lagged superposition of source amplitudes at all hypothetical DOAs. Regularizing with an ℓ1-norm constraint renders the problem solvable with convex optimization, and promoting sparsity gives high-resolution DOA maps. Here the sparse source distribution is derived using maximum a posteriori estimates for both single and multiple snapshots. CS does not require inversion of the data covariance matrix and thus works well even for a single snapshot where it gives higher resolution than conventional beamforming. For multiple snapshots, CS outperforms conventional high-resolution methods even with coherent arrivals and at low signal-to-noise ratio. The superior resolution of CS is demonstrated with vertical array data from the SWellEx96 experiment for coherent multi-paths.

10.
J Acoust Soc Am ; 137(4): 1923-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25920844

RESUMEN

The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high-resolution imaging. On a discrete angular grid, the CS reconstruction degrades due to basis mismatch when the DOAs do not coincide with the angular directions on the grid. To overcome this limitation, a continuous formulation of the DOA problem is employed and an optimization procedure is introduced, which promotes sparsity on a continuous optimization variable. The DOA estimation problem with infinitely many unknowns, i.e., source locations and amplitudes, is solved over a few optimization variables with semidefinite programming. The grid-free CS reconstruction provides high-resolution imaging even with non-uniform arrays, single-snapshot data and under noisy conditions as demonstrated on experimental towed array data.

11.
J Acoust Soc Am ; 136(1): 260-71, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24993212

RESUMEN

Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex optimization. The DOA estimation problem is formulated in the CS framework and it is shown that CS has superior performance compared to traditional DOA estimation methods especially under challenging scenarios such as coherent arrivals and single-snapshot data. An offset and resolution analysis is performed to indicate the limitations of CS. It is shown that the limitations are related to the beampattern, thus can be predicted. The high-resolution capabilities and the robustness of CS are demonstrated on experimental array data from ocean acoustic measurements for source tracking with single-snapshot data.

12.
J Acoust Soc Am ; 134(4): 2790-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24116417

RESUMEN

The challenge of a deep-water oil leak is that a significant quantity of oil remains in the water column and possibly changes properties. There is a need to quantify the oil settled within the water column and determine its physical properties to assist in the oil recovery. There are currently no methods to map acoustically submerged oil in the sea. In this paper, high-frequency acoustic methods are proposed to localize the oil polluted area and characterize the parameters of its spatial covariance, i.e., variance and correlation. A model is implemented to study the underlying mechanisms of backscattering due to spatial heterogeneity of the medium and predict backscattering returns. An algorithm for synthetically generating stationary, Gaussian random fields is introduced which provides great flexibility in implementing the physical model of an inhomogeneous field with spatial covariance. A method for inference of spatial covariance parameters is proposed to describe the scattering field in terms of its second-order statistics from the backscattered returns. The results indicate that high-frequency acoustic methods not only are suitable for large-scale detection of oil contamination in the water column but also allow inference of the spatial covariance parameters resulting in a statistical description of the oil field.


Asunto(s)
Acústica , Modelos Estadísticos , Yacimiento de Petróleo y Gas , Petróleo/análisis , Agua de Mar/análisis , Sonido , Contaminantes Químicos del Agua/análisis , Algoritmos , Simulación por Computador , Monitoreo del Ambiente , Gases , Movimiento (Física) , Análisis Numérico Asistido por Computador , Océanos y Mares , Presión , Dispersión de Radiación , Procesamiento de Señales Asistido por Computador , Espectrografía del Sonido , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA