Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37448062

RESUMEN

Speech emotion recognition (SER) is a challenging task in human-computer interaction (HCI) systems. One of the key challenges in speech emotion recognition is to extract the emotional features effectively from a speech utterance. Despite the promising results of recent studies, they generally do not leverage advanced fusion algorithms for the generation of effective representations of emotional features in speech utterances. To address this problem, we describe the fusion of spatial and temporal feature representations of speech emotion by parallelizing convolutional neural networks (CNNs) and a Transformer encoder for SER. We stack two parallel CNNs for spatial feature representation in parallel to a Transformer encoder for temporal feature representation, thereby simultaneously expanding the filter depth and reducing the feature map with an expressive hierarchical feature representation at a lower computational cost. We use the RAVDESS dataset to recognize eight different speech emotions. We augment and intensify the variations in the dataset to minimize model overfitting. Additive White Gaussian Noise (AWGN) is used to augment the RAVDESS dataset. With the spatial and sequential feature representations of CNNs and the Transformer, the SER model achieves 82.31% accuracy for eight emotions on a hold-out dataset. In addition, the SER system is evaluated with the IEMOCAP dataset and achieves 79.42% recognition accuracy for five emotions. Experimental results on the RAVDESS and IEMOCAP datasets show the success of the presented SER system and demonstrate an absolute performance improvement over the state-of-the-art (SOTA) models.


Asunto(s)
Redes Neurales de la Computación , Habla , Humanos , Algoritmos , Sistemas de Computación , Emociones
2.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679694

RESUMEN

Cell-free (CF) networks are proposed to suppress the interference among collocated cells by deploying several BSs without cell boundaries. Nevertheless, as installing several base stations (BSs) may require high power consumption, cooperative CF networks integrated with a reconfigurable intelligent surface (RIS)/metasurface can avoid this problem. In such cooperative RIS-aided MIMO networks, efficient beamforming schemes are essential to boost their spectral and energy efficiency. However, most of the existing available beamforming schemes to maximize spectral and energy efficiency are complex and entail high complexity due to the matrix inversions. To this end, in this work we present a computationally efficient stochastic optimization-based particle swarm optimization (PSO) algorithm to amplify the spectral efficiency of the cooperative RIS-aided CF MIMO system. In the proposed PSO algorithm, several swarms are generated, while the direction of each swarm is tuned in each iteration based on the sum-rate performance to obtain the best solution. Our simulation results show that our proposed scheme can approximate the performance of the existing solutions for both the performance metrics, i.e., spectral and energy efficiency, at a very low complexity.


Asunto(s)
Algoritmos , Benchmarking , Simulación por Computador , Inteligencia
4.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36298131

RESUMEN

Because of their simple design structure, end-to-end deep learning (E2E-DL) models have gained a lot of attention for speech enhancement. A number of DL models have achieved excellent results in eliminating the background noise and enhancing the quality as well as the intelligibility of noisy speech. Designing resource-efficient and compact models during real-time processing is still a key challenge. In order to enhance the accomplishment of E2E models, the sequential and local characteristics of speech signal should be efficiently taken into consideration while modeling. In this paper, we present resource-efficient and compact neural models for end-to-end noise-robust waveform-based speech enhancement. Combining the Convolutional Encode-Decoder (CED) and Recurrent Neural Networks (RNNs) in the Convolutional Recurrent Network (CRN) framework, we have aimed at different speech enhancement systems. Different noise types and speakers are used to train and test the proposed models. With LibriSpeech and the DEMAND dataset, the experiments show that the proposed models lead to improved quality and intelligibility with fewer trainable parameters, notably reduced model complexity, and inference time than existing recurrent and convolutional models. The quality and intelligibility are improved by 31.61% and 17.18% over the noisy speech. We further performed cross corpus analysis to demonstrate the generalization of the proposed E2E SE models across different speech datasets.


Asunto(s)
Percepción del Habla , Habla , Ruido , Redes Neurales de la Computación
5.
Sci Rep ; 12(1): 17725, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273025

RESUMEN

This paper aims the development of a new reduced-cost algorithm for a multi-objective robust transmitter placement under uncertainty. Toward this end, we propose a new hybrid Kriging/Grey Wolf Optimizer (GWO) approach combined with robust design optimization to estimate the set of Pareto frontier by searching robustness as well as accuracy (lower objective function) in a design space. We consider minimization of the energy power consumption for transmitting as well as maximization of signal coverage in a multi-objective robust optimization model. The reliability of the model to control signal overlap for multiple transmitting antennas is also provided. To smooth computational cost, the proposed method instead of evaluating all receiver test points in each optimization iteration approximates signal coverages using Kriging interpolation to obtain optimal transmitter positions. The results demonstrate the utility and the efficiency of the proposed method in rendering the robust optimal design and analyzing the sensitivity of the transmitter placement problem under practically less-expensive computational efforts (350% and 320% less than computational time elapsed using standalone GWO and NSGAII respectively).

6.
PeerJ Comput Sci ; 8: e878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494866

RESUMEN

The plaque assay is a standard quantification system in virology for verifying infectious particles. One of the complex steps of plaque assay is the counting of the number of viral plaques in multiwell plates to study and evaluate viruses. Manual counting plaques are time-consuming and subjective. There is a need to reduce the workload in plaque counting and for a machine to read virus plaque assay; thus, herein, we developed a machine-learning (ML)-based automated quantification machine for viral plaque counting. The machine consists of two major systems: hardware for image acquisition and ML-based software for image viral plaque counting. The hardware is relatively simple to set up, affordable, portable, and automatically acquires a single image or multiple images from a multiwell plate for users. For a 96-well plate, the machine could capture and display all images in less than 1 min. The software is implemented by K-mean clustering using ML and unsupervised learning algorithms to help users and reduce the number of setup parameters for counting and is evaluated using 96-well plates of dengue virus. Bland-Altman analysis indicates that more than 95% of the measurement error is in the upper and lower boundaries [±2 standard deviation]. Also, gage repeatability and reproducibility analysis showed that the machine is capable of applications. Moreover, the average correct measurements by the machine are 85.8%. The ML-based automated quantification machine effectively quantifies the number of viral plaques.

7.
PLoS One ; 17(3): e0265044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35271627

RESUMEN

Inter-satellite optical wireless communication (Is-OWC) links can become promising solutions to realize the next-generation high-speed communication services. The operation of Global Navigation Satellite Systems can be improved with the use of Is-OWC links through ranging and communication services. However, the key challenge in Inter-satellite link (ISL) is its effective range which is limited due to pointing errors. In this work, we propose to develop a high-capacity and long-reach Is-OWC link by incorporating hybrid mode division multiplexing (MDM) and wavelength division multiplexing (WDM) schemes to transmit ten independent channels over 40000kms Is-OWC link. Each channel is capable of carrying 400Gbps data which is encoded by the dual polarization quadrature phase shift key technique with required signal to noise ratio (SNR) and received power. The proposed Is-OWC link satisfies the enhanced communication within Geostationary Earth Orbit (GEO) and Low Earth Orbit (LEO) satellites. The proposed Is-OWC is further evaluated under the impact of space turbulences, particularly transmitter and receiver pointing errors. The result reported that the proposed Is-OWC link can transmit 4Tbps data over 16000kms with the transmitter pointing error of 2µrad and receiver pointing error of 1µrad.


Asunto(s)
Dispositivos Ópticos , Comunicación
8.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36616615

RESUMEN

A collaborative painting robot that can be used as an alternative to workers has been developed using a digital twin framework and its performance was demonstrated experimentally. The digital twin of the automatic painting robot simulates the entire process and estimates the paint result before the real execution. An operator can view the simulated process and result with an option to either confirm or cancel the task. If the task is accepted, the digital twin generates all the parameters, including the end effector trajectory of the robot, the material flow to the collaborative robot, and a spray mechanism. This ability means that the painting process can be practiced in a virtual environment to decrease set costs, waste, and time, all of which are highly demanded in single-item production. In this study, the screen was fixtureless and, thus, a camera was used to capture it in a physical environment, which was further analyzed to determine its pose. The digital twin then builds the screen in real-time in a virtual environment. The communication between the physical and digital twins is bidirectional in this scenario. An operator can design a painting pattern, such as a basic shape and/or letter, along with its size and paint location, in the resulting procedure. The digital twin then generates the simulation and expected painting result using the physical twin's screen pose. The painting results show that the root mean square error (RMSE) of the painting is less than 1.5 mm and the standard deviation of RMSE is less than 0.85 mm. Additionally, the initial benefits of the technique include lower setup costs, waste, and time, as well as an easy-to-use operating procedure. More benefits are expected from the digital twin framework, such as the ability of the digital twin to (1) find a solution when a fault arises, (2) refine the control or optimize the operation, and (3) plan using historic data.

9.
PLoS One ; 16(11): e0259438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780504

RESUMEN

Autonomous vehicles are regarded as future transport mechanisms that drive the vehicles without the need of drivers. The photonic-based radar technology is a promising candidate for delivering attractive applications to autonomous vehicles such as self-parking assistance, navigation, recognition of traffic environment, etc. Alternatively, microwave radars are not able to meet the demand of next-generation autonomous vehicles due to its limited bandwidth availability. Moreover, the performance of microwave radars is limited by atmospheric fluctuation which causes severe attenuation at higher frequencies. In this work, we have developed coherent-based frequency-modulated photonic radar to detect target locations with longer distance. Furthermore, the performance of the proposed photonic radar is investigated under the impact of various atmospheric weather conditions, particularly fog and rain. The reported results show the achievement of significant signal to noise ratio (SNR) and received power of reflected echoes from the target for the proposed photonic radar under the influence of bad weather conditions. Moreover, a conventional radar is designed to establish the effectiveness of the proposed photonic radar by considering similar parameters such as frequency and sweep time.


Asunto(s)
Vehículos Autónomos , Radar
10.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800230

RESUMEN

A quality monitoring system for telecommunication services is relevant for network operators because it can help to improve users' quality-of-experience (QoE). In this context, this article proposes a quality monitoring system, named Q-Meter, whose main objective is to improve subscriber complaint detection about telecommunication services using online-social-networks (OSNs). The complaint is detected by sentiment analysis performed by a deep learning algorithm, and the subscriber's geographical location is extracted to evaluate the signal strength. The regions in which users posted a complaint in OSN are analyzed using a freeware application, which uses the radio base station (RBS) information provided by an open database. Experimental results demonstrated that sentiment analysis based on a convolutional neural network (CNN) and a bidirectional long short-term memory (BLSTM)-recurrent neural network (RNN) with the soft-root-sign (SRS) activation function presented a precision of 97% for weak signal topic classification. Additionally, the results showed that 78.3% of the total number of complaints are related to weak coverage, and 92% of these regions were proved that have coverage problems considering a specific cellular operator. Moreover, a Q-Meter is low cost and easy to integrate into current and next-generation cellular networks, and it will be useful in sensing and monitoring tasks.

11.
Sensors (Basel) ; 21(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445691

RESUMEN

The routing algorithm is one of the main factors that directly impact on network performance. However, conventional routing algorithms do not consider the network data history, for instances, overloaded paths or equipment faults. It is expected that routing algorithms based on machine learning present advantages using that network data. Nevertheless, in a routing algorithm based on reinforcement learning (RL) technique, additional control message headers could be required. In this context, this research presents an enhanced routing protocol based on RL, named e-RLRP, in which the overhead is reduced. Specifically, a dynamic adjustment in the Hello message interval is implemented to compensate the overhead generated by the use of RL. Different network scenarios with variable number of nodes, routes, traffic flows and degree of mobility are implemented, in which network parameters, such as packet loss, delay, throughput and overhead are obtained. Additionally, a Voice-over-IP (VoIP) communication scenario is implemented, in which the E-model algorithm is used to predict the communication quality. For performance comparison, the OLSR, BATMAN and RLRP protocols are used. Experimental results show that the e-RLRP reduces network overhead compared to RLRP, and overcomes in most cases all of these protocols, considering both network parameters and VoIP quality.

12.
Sensors (Basel) ; 20(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142679

RESUMEN

Minimizing human intervention in engines, such as traffic lights, through automatic applications and sensors has been the focus of many studies. Thus, Deep Learning (DL) algorithms have been studied for traffic signs and vehicle identification in an urban traffic context. However, there is a lack of priority vehicle classification algorithms with high accuracy, fast processing, and a lightweight solution. For filling those gaps, a vehicle detection system is proposed, which is integrated with an intelligent traffic light. Thus, this work proposes (1) a novel vehicle detection model named Priority Vehicle Image Detection Network (PVIDNet), based on YOLOV3, (2) a lightweight design strategy for the PVIDNet model using an activation function to decrease the execution time of the proposed model, (3) a traffic control algorithm based on the Brazilian Traffic Code, and (4) a database containing Brazilian vehicle images. The effectiveness of the proposed solutions were evaluated using the Simulation of Urban MObility (SUMO) tool. Results show that PVIDNet reached an accuracy higher than 0.95, and the waiting time of priority vehicles was reduced by up to 50%, demonstrating the effectiveness of the proposed solution.

13.
PLoS One ; 15(11): e0242613, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253264

RESUMEN

This paper aims to further increase the reliability of optimal results by setting the simulation conditions to be as close as possible to the real or actual operation to create a Cyber-Physical System (CPS) view for the installation of the Fractional-Order PID (FOPID) controller. For this purpose, we consider two different sources of variability in such a CPS control model. The first source refers to the changeability of a target of the control model (multiple setpoints) because of environmental noise factors and the second source refers to an anomaly in sensors that is raised in a feedback loop. We develop a new approach to optimize two objective functions under uncertainty including signal energy control and response error control while obtaining the robustness among the source of variability with the lowest computational cost. A new hybrid surrogate-metaheuristic approach is developed using Particle Swarm Optimization (PSO) to update the Gaussian Process (GP) surrogate for a sequential improvement of the robust optimal result. The application of efficient global optimization is extended to estimate surrogate prediction error with less computational cost using a jackknife leave-one-out estimator. This paper examines the challenges of such a robust multi-objective optimization for FOPID control of a five-bar linkage robot manipulator. The results show the applicability and effectiveness of our proposed method in obtaining robustness and reliability in a CPS control system by tackling required computational efforts.


Asunto(s)
Algoritmos , Modelos Teóricos , Robótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA