Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(37): e2404542121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39240968

RESUMEN

Human C-reactive protein (CRP) is a pentameric complex involved in immune defense and regulation of autoimmunity. CRP is also a therapeutic target, with both administration and depletion of serum CRP being pursued as a possible treatment for autoimmune and cardiovascular diseases, among others. CRP binds to phosphocholine (PC) moieties on membranes to activate the complement system via the C1 complex, but it is unknown how CRP, or any pentraxin, binds to C1. Here, we present a cryoelectron tomography (cryoET)-derived structure of CRP bound to PC ligands and the C1 complex. To gain control of CRP binding, a synthetic mimotope of PC was synthesized and used to decorate cell-mimetic liposome surfaces. Structure-guided mutagenesis of CRP yielded a fully active complex able to bind PC-coated liposomes that was ideal for cryoET and subtomogram averaging. In contrast to antibodies, which form Fc-mediated hexameric platforms to bind and activate the C1 complex, CRP formed rectangular platforms assembled from four laterally associated CRP pentamers that bind only four of the six available globular C1 head groups. Potential residues mediating lateral association of CRP were identified from interactions between unit cells in existing crystal structures, which rationalized previously unexplained mutagenesis data regarding CRP-mediated complement activation. The structure also enabled interpretation of existing biochemical data regarding interactions mediating C1 binding and identified additional residues for further mutagenesis studies. These structural data therefore provide a possible mechanism for regulation of complement by CRP, which limits complement progression and has consequences for how the innate immune system influences autoimmunity.


Asunto(s)
Proteína C-Reactiva , Humanos , Proteína C-Reactiva/química , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/inmunología , Activación de Complemento , Complemento C1/metabolismo , Complemento C1/química , Vía Clásica del Complemento/inmunología , Microscopía por Crioelectrón , Liposomas/metabolismo , Liposomas/química , Modelos Moleculares , Fosforilcolina/química , Fosforilcolina/metabolismo , Unión Proteica
2.
Nucleic Acids Res ; 52(11): 6406-6423, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38742631

RESUMEN

Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN , Deinococcus , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Deinococcus/efectos de la radiación , Deinococcus/genética , Deinococcus/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Estrés Fisiológico , Rayos Ultravioleta
3.
Adv Sci (Weinh) ; 11(10): e2306272, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38146132

RESUMEN

Photoconvertible fluorescent proteins (PCFP) are important cellular markers in advanced imaging modalities such as photoactivatable localization microscopy (PALM). However, their complex photophysical and photochemical behavior hampers applications such as quantitative and single-particle-tracking PALM. This work employs multidimensional NMR combined with ensemble fluorescence measurements to show that the popular mEos4b in its Green state populates two conformations (A and B), differing in side-chain protonation of the conserved residues E212 and H62,  altering the hydrogen-bond network in the chromophore pocket. The interconversion (protonation/deprotonation) between these two states, which occurs on the minutes time scale in the dark, becomes strongly accelerated in the presence of UV light, leading to a population shift. This work shows that the reversible photoswitching and Green-to-Red photoconversion properties differ between the A and B states. The chromophore in the A-state photoswitches more efficiently and is proposed to be more prone to photoconversion, while the B-state shows a higher level of photobleaching. Altogether, this data highlights the central role of conformational heterogeneity in fluorescent protein photochemistry.


Asunto(s)
Colorantes , Microscopía , Proteínas Luminiscentes/química
4.
J Am Chem Soc ; 145(27): 14636-14646, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37389576

RESUMEN

Single-molecule localization microscopy (SMLM) at cryogenic temperature opens new avenues to investigate intact biological samples at the nanoscale and perform cryo-correlative studies. Genetically encoded fluorescent proteins (FPs) are markers of choice for cryo-SMLM, but their reduced conformational flexibility below the glass-transition temperature hampers efficient cryo-photoswitching. We investigated cryo-switching of rsEGFP2, one of the most efficient reversibly switchable fluorescent proteins at ambient temperature due to facile cis-trans isomerization of the chromophore. UV-visible microspectrophotometry and X-ray crystallography revealed a completely different switching mechanism at ∼110 K. At this cryogenic temperature, on-off photoswitching involves the formation of two off-states in cis conformation with blue-shifted absorption relative to that of the trans protonated chromophore populated at ambient temperature. Only one of these off-states can be switched back to the fluorescent on-state by 405 nm light, while both of them are sensitive to UV light at 355 nm. Superior recovery to the fluorescent on-state by 355 nm light was confirmed at the single-molecule level. This suggests, as also shown by simulations, that employing 355 nm light in cryo-SMLM experiments using rsEGFP2 and possibly other FPs could improve the effective labeling efficiency achievable with this technique. The rsEGFP2 photoswitching mechanism discovered in this work adds to the panoply of known switching mechanisms in fluorescent proteins.


Asunto(s)
Rayos Ultravioleta , Temperatura , Proteínas Luminiscentes/química , Isomerismo , Conformación Proteica
5.
J Phys Chem B ; 127(22): 5046-5054, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37235526

RESUMEN

Combining fluorescence and phosphorescence kinetics, we characterize forward and reverse intersystem crossing (FISC and RISC, respectively) between the singlet and triplet manifolds S ↔ T in photoswitchable (rsEGFP2) and non-photoswitchable (EGFP) green fluorescent proteins upon continuous 488 nm laser excitation at cryogenic temperatures (CTs). Both proteins behave very similarly, with T1 absorption spectra showing a visible peak at 490 nm (10 mM-1 cm-1) and a vibrational progression in the near-infrared (720 to 905 nm). The dark lifetime of T1 is 21-24 ms at 100 K and very weakly temperature-dependent up to 180 K. Above 180 K, T1 lifetimes reduce rapidly to few milliseconds as found at room temperature (RT). FISC and RISC quantum yields are 0.3 and 0.1%, respectively, for both proteins. The light-induced RISC channel becomes faster than the dark reversal at power densities as low as 20 W cm-2. We discuss implications for fluorescence (super resolution-) microscopy at CT and RT.


Asunto(s)
Luz , Temperatura , Proteínas Fluorescentes Verdes , Fluorescencia
6.
J Phys Chem Lett ; 13(22): 5075-5080, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35653150

RESUMEN

Green-to-red photoconvertible fluorescent proteins (PCFPs) are widely employed as markers in photoactivated localization microscopy (PALM). However, their highly complex photophysical behavior complicates their usage. The fact that only a limited fraction of a PCFP ensemble can form the photoconverted state upon near-UV light illumination, termed photoconversion efficiency (PCE), lowers the achievable spatial resolution in PALM and creates undercounting errors in quantitative counting applications. Here, we show that the PCE of mEos4b is not a fixed property of this PCFP but strongly depends on illumination conditions. Attempts to reduce long-lived blinking in red mEos4b by application of 488 nm light lead to a reduction of the PCE. Furthermore, the PCE of mEos4b strongly depends on the applied 405 nm power density. A refined photophysical model of mEos4b accounts for the observed effects, involving nonlinear green-state photobleaching upon violet light illumination favored by photon absorption by a putative radical dark state.


Asunto(s)
Iluminación , Microscopía , Proteínas Fluorescentes Verdes , Rayos Láser , Luz , Proteínas Luminiscentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA