Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(8): 240284, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39144495

RESUMEN

Advanced in vitro culture systems have emerged as alternatives to animal testing and traditional cell culture methods in biomedical research. Polydimethylsiloxane (PDMS) is frequently used in creating sophisticated culture devices owing to its elastomeric properties, which allow mechanical stretching to simulate physiological movements in cell experiments. We introduce a straightforward method that uses three types of commercial tape-generic, magic and masking-to fabricate PDMS membranes with microscale thicknesses (47.2 µm for generic, 58.1 µm for magic and 89.37 µm for masking) in these devices. These membranes are shaped as the bases of culture wells and can perform cyclic radial movements controlled via a vacuum system. In experiments with A549 cells under three mechanical stimulation conditions, we analysed transcriptional regulators responsive to external mechanical stimuli. Results indicated increased nuclear yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) activity in both confluent and densely packed cells under cyclically mechanical strains (Pearson's coefficient (PC) of 0.59 in confluent and 0.24 in dense cells) compared with static (PC = 0.47 in confluent and 0.13 in dense) and stretched conditions (PC = 0.55 in confluent and 0.20 in dense). This technique offers laboratories without microfabrication capabilities a viable option for exploring cellular behaviour under dynamic mechanical stimulation using PDMS membrane-equipped devices.

3.
Appl Biochem Biotechnol ; 191(1): 59-73, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31989437

RESUMEN

This first-attempt study used electrochemical methods to quantitatively assess electron-shuttling capabilities of different neurotransmitters crucial to catecholamine biosynthesis in human brain. As prior studies mentioned, aromatics bearing ortho- or para-dihydroxybenzenes could reveal promising electroactivities to stimulate bioenergy generation in microbial fuel cells (MFCs). This feasibility study extended to investigate the electrochemical characteristics of catecholamines and trace amines (e.g., 14 model compounds selected from neurotransmitters) synthesized by human brain via cyclic voltammetry methods (CVs) and MFCs. Dopamine (DA), levodopa (L-DOPA), epinephrine (EP), norepinephrine (NP), and 3,4-dihydroxyphenylacetic acid (DOPAC) would perform the electron-shuttling characteristics, and the rest would not. In particular, DA formed by decarboxylation of L-DOPA could exhibit relatively higher electrochemical activities than their precursors. In addition, carboxylic acids formed by deamination and carboxylation of trace monoamines would reveal more significant reductive potential (Epc); however, their oxidative electric currents seemed to be reduced. That is, chemical structure significantly influenced whether the electrochemical characteristics could be effectively expressed. This work also clearly revealed that neurotransmitters with ortho-dihydroxybenzenes exhibited promising stimulation to bioelectricity-generating capabilities of MFCs in the ranking of DA ~ EP > NP > L-DOPA > DOPAC. This was consistent with ES behaviors as CV analyses indicated.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Electroquímicas , Neurotransmisores/química
4.
ACS Appl Mater Interfaces ; 3(8): 3195-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21732602

RESUMEN

A Ce(3+)-activated fluorosulfide phosphor (ß-YFS:Ce(3+)) was synthesized by solid-state reaction in a sealed tube. The crystal structure has been refined from the XRD profiles and there are two different crystallographic rare earth sites, namely, Y(1) and Y(2), where the Ce(3+) ions occupied. The emission band with a maximum at 495 nm of ß-Y(0.99)Ce(0.01)FS phosphor was characterized by the 4f-5d transitions of Ce(3+) ion. With increasing Ce(3+) concentration, the emission variations were observed from 495 to 547 nm. When ß-YFS:Ce(3+) phosphors were utilized to incorporate with n-UV/blue chip, greenish-white light with color rendering index of 65-77 were obtained. The results indicate that the tunable green- to yellow-emitting ß-YFS:Ce(3+) can serve as a potential phosphor for incorporation in fabrication for solid-state lighting. The preparation, spectroscopic characterization, quantum efficiency, thermal-quenching behavior, and related LED device data are also presented.


Asunto(s)
Cerio/química , Sulfuros/química , Color , Iluminación , Teoría Cuántica , Temperatura , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA