Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 262(Pt 2): 119931, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260717

RESUMEN

Soil health is integral to sustainable agroecosystem management. Current monitoring and assessment practices primarily focus on soil physicochemical properties, yet the perspective of multitrophic biodiversity remains underexplored. Here we used environmental DNA (eDNA) technology to monitor multitrophic biodiversity in four typical agroecosystems, and analyzed the species composition and diversity changes in fungi, bacteria and metazoan, and combined with the traditional physicochemical variables to establish a soil health assessment framework centered on biodiversity data. First, eDNA technology detected rich multitrophic biodiversity in four agroecosystems, including 100 phyla, 273 classes, 611 orders, 1026 families, 1668 genera and 1146 species with annotated classification, and the relative sequence abundance of dominant taxa fluctuates tens of times across agroecosystems. Second, significant differences in soil physicochemical variables such as organic matter (OM), total nitrogen (TN) and available phosphorus (AP) were observed among different agroecosystems, nutrients were higher in cropland and rice paddies, while heavy metals were higher in fish ponds and lotus ponds. Third, biodiversity metrics, including α and ß diversity, also showed significant changes across agroecosystems, the soil biota was generally more sensitive to nutrients (e.g., OM, TN or AP), while the fungal communities were mainly affected by heavy metals in October (e.g., Cu and Cr). Finally, we screened 48 sensitive organismal indicators and found significant positive consistency between the developed eDNA indices and the traditional soil quality index (SQI, reaching up to R2 = 0.58). In general, this study demonstrated the potential of eDNA technology in soil health assessment and underscored the importance of a multitrophic perspective for efficient monitoring and managing agroecosystems.

2.
Chem Sci ; 15(19): 7150-7159, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756810

RESUMEN

An oxidative strategy for the preparation of dihydrobenzofurans via heterogeneous photocatalysis is reported. This method leverages the surface interaction between the alkenyl phenol and the TiO2 solid surface, which enables direct activation by visible light without the need for pre-functionalization or surface modification. The resulting alkenyl phenoxyl radical is proposed to be selectively captured by a neutral phenol nucleophile, rendering ß-5' coupling with excellent chemo- and regio-selectivity. The reaction proceeds under benign conditions, using an inexpensive, nontoxic, and recyclable photocatalyst under visible light irradiation with air as the terminal oxidant at room temperature.

3.
Org Lett ; 25(6): 907-911, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36744826

RESUMEN

A photocatalytic method for phenol and alkenylphenol oxidative coupling is reported using an inexpensive heterogeneous titanium dioxide photocatalyst with air and visible light. During the coupling process, the Ti-substrate complex is activated under visible light through a ligand to metal charge transfer effect, and the diphenol adduct is proposed to form through a radical cation. The heterogeneous TiO2 catalyst remains stable throughout the reaction and can be easily removed and reused multiple times.

4.
ACS Catal ; 12(11): 6532-6549, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35928569

RESUMEN

Phenols and their derivatives are the elementary building blocks for several classes of complex molecules that play essential roles in biological systems. Nature has devised methods to selectively couple phenolic compounds, and many efforts have been undertaken by chemists to mimic such coupling processes. A range of mechanisms can be involved and with well-studied catalysts, reaction outcomes in phenol-phenol oxidative coupling reactions can be predicted with a good level of fidelity. However, reactions with catalysts that have not been studied or that do not behave similarly to known catalysts can be hard to predict and control. This Perspective provides an overview of catalytic methods for the oxidative coupling of phenols, focusing on the last 10 years, and summarizes current challenges.

5.
PLoS Genet ; 17(2): e1009378, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600493

RESUMEN

Mutations in RanBP2 (also known as Nup358), one of the main components of the cytoplasmic filaments of the nuclear pore complex, contribute to the overproduction of acute necrotizing encephalopathy (ANE1)-associated cytokines. Here we report that RanBP2 represses the translation of the interleukin 6 (IL6) mRNA, which encodes a cytokine that is aberrantly up-regulated in ANE1. Our data indicates that soon after its production, the IL6 messenger ribonucleoprotein (mRNP) recruits Argonautes bound to let-7 microRNA. After this mRNP is exported to the cytosol, RanBP2 sumoylates mRNP-associated Argonautes, thereby stabilizing them and enforcing mRNA silencing. Collectively, these results support a model whereby RanBP2 promotes an mRNP remodelling event that is critical for the miRNA-mediated suppression of clinically relevant mRNAs, such as IL6.


Asunto(s)
Proteínas Argonautas/genética , Factores Eucarióticos de Iniciación/genética , Regulación de la Expresión Génica , MicroARNs/genética , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/genética , Regiones no Traducidas 3'/genética , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , MicroARNs/metabolismo , Chaperonas Moleculares/metabolismo , Mutación , Proteínas de Complejo Poro Nuclear/metabolismo , Pancreatitis Aguda Necrotizante/genética , Pancreatitis Aguda Necrotizante/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sumoilación
6.
Cell Physiol Biochem ; 55(S1): 1-24, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33385319

RESUMEN

The regulation of cellular volume in response to osmotic change has largely been studied at the whole cell level. Such regulation occurs by the inhibition or activation of ionic and organic solute transport pathways at the cell surface and is coincident with remodelling of the plasma membrane. However, it is only in rare instances that osmotic insults are experienced by cells and tissues. By contrast, the relatively minute luminal volumes of membrane-bound organelles are constantly subject to shifts in their solute concentrations as exemplified in the endocytic pathway where these evolve alongside with maturation. In this review, we summarize recent evidence that suggests trafficking events are in fact orchestrated by the solute fluxes of organelles that briefly impose osmotic gradients. We first describe how hydrostatic pressure and the resultant tension on endomembranes can be readily dissipated by controlled solute efflux since water is obliged to exit. In such cases, the relief of tension on the limiting membrane of the organelle can promote its remodelling by coat proteins, ESCRT machinery, and motors. Second, and reciprocally, we propose that osmotic gradients between organellar lumens and the cytosol may persist or be created. Such gradients impose osmotic pressure and tension on the endomembrane that prevent its remodelling. The control of endomembrane tension is dysregulated in lysosomal storage disorders and can be usurped by pathogens in endolysosomes. Since trafficking and signaling pathways conceivably sense and respond to endomembrane tension, we anticipate that understanding how cells control organellar volumes and the movement of endocytic fluid in particular will be an exciting new area of research.


Asunto(s)
Membrana Celular/metabolismo , Animales , Transporte Biológico/fisiología , Tamaño de la Célula , Humanos , Lisosomas/metabolismo , Presión Osmótica/fisiología , Canales de Potasio/metabolismo
7.
Methods Mol Biol ; 2166: 35-49, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710402

RESUMEN

In eukaryotes, most mRNAs that encode secretory or membrane-bound proteins are translated by ribosomes associated with the surface of the endoplasmic reticulum (ER). Other such mRNAs are tethered to the ER by mRNA receptors. However, there has been much debate as to whether all mRNAs, regardless of their encoded polypeptide, are anchored to the ER at some low level. Here we describe a protocol to visualize ER-associated mRNAs in tissue culture cells by single-molecule fluorescence in situ hybridization (smFISH). Using this protocol, we have established that a subset of all mRNAs, regardless of whether they encode secretory or cytosolic proteins, are ER associated in a ribosome-dependent manner.


Asunto(s)
Retículo Endoplásmico/metabolismo , Hibridación Fluorescente in Situ/métodos , Proteínas de la Membrana/metabolismo , ARN Mensajero/genética , Ribosomas/metabolismo , Imagen Individual de Molécula/métodos , Animales , Línea Celular , Citosol/metabolismo , Digitonina/química , Humanos , Imagen Óptica/métodos , ARN Mensajero/metabolismo
8.
Phys Chem Chem Phys ; 11(23): 4761-9, 2009 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-19492130

RESUMEN

Ultraviolet (UV) photodissociation dynamics of the SD radical in vibrationally ground and excited states (X (2)Pi(3/2), v'' = 0-5) are investigated in the photolysis wavelength region of 220 to 244 nm using the high-n Rydberg atom time-of-flight (HRTOF) technique. The UV photodissociation dynamics of SD (X (2)Pi(3/2)) from v'' = 0-5 are similar to each other and to that of SH studied previously. The anisotropy parameter of the D-atom product is approximately -1; the spin-orbit branching fractions of the S((3)P(J)) products are essentially constant, with an average S((3)P(2)) : S((3)P(1)) : S((3)P(0)) = 0.51 : 0.37 : 0.12. The UV photolysis of SD is a direct dissociation from the repulsive (2)Sigma(-) state following the perpendicular (2)Sigma(-)-X (2)Pi excitation. The S((3)P(J)) product fine-structure state distributions approach that in the sudden limit dissociation on the single repulsive (2)Sigma(-) curve, but they are also affected by nonadiabatic couplings among the repulsive (4)Sigma(-), (2)Sigma(-), and (4)Pi states. A bond dissociation energy D(0)(S-D) = 29 660 +/- 25 cm(-1) is obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA