Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Pain ; 20: 17448069241272149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39079948

RESUMEN

Cadaverine is an endogenous metabolite produced by the gut microbiome with various activity in physiological and pathological conditions. However, whether cadaverine regulates pain or itch remains unclear. In this study, we first found that cadaverine may bind to histamine 4 receptor (H4R) with higher docking energy score using molecular docking simulations, suggesting cadaverine may act as an endogenous ligand for H4R. We subsequently found intradermal injection of cadaverine into the nape or cheek of mice induces a dose-dependent scratching response in mice, which was suppressed by a selective H4R antagonist JNJ-7777120, transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine and PLC inhibitor U73122, but not H1R antagonist or TRPA1 antagonist or TRPV4 antagonist. Consistently, cadaverine-induced itch was abolished in Trpv1-/- but not Trpa1-/- mice. Pharmacological analysis indicated that mast cells and opioid receptors were also involved in cadaverine-induced itch in mice. scRNA-Seq data analysis showed that H4R and TRPV1 are mainly co-expressed on NP2, NP3 and PEP1 DRG neurons. Calcium imaging analysis showed that cadaverine perfusion enhanced calcium influx in the dissociated dorsal root ganglion (DRG) neurons, which was suppressed by JNJ-7777120 and capsazepine, as well as in the DRG neurons from Trpv1-/- mice. Patch-clamp recordings found that cadaverine perfusion significantly increased the excitability of small diameter DRG neurons, and JNJ-7777120 abolished this effect, indicating involvement of H4R. Together, these results provide evidences that cadaverine is a novel endogenous pruritogens, which activates H4R/TRPV1 signaling pathways in the primary sensory neurons.


Asunto(s)
Cadaverina , Ganglios Espinales , Ratones Endogámicos C57BL , Prurito , Canales Catiónicos TRPV , Animales , Prurito/metabolismo , Prurito/inducido químicamente , Canales Catiónicos TRPV/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Masculino , Cadaverina/análogos & derivados , Cadaverina/farmacología , Cadaverina/metabolismo , Ratones , Ratones Noqueados , Humanos , Mastocitos/metabolismo , Mastocitos/efectos de los fármacos , Canal Catiónico TRPA1/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Capsaicina/análogos & derivados
2.
Mol Plant Pathol ; 19(9): 2149-2161, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29660235

RESUMEN

Pathogen-host interaction is a complicated process; pathogens mainly infect host plants to acquire nutrients, especially sugars. Rhizoctonia solani, the causative agent of sheath blight disease, is a major pathogen of rice. However, it is not known how this pathogen obtains sugar from rice plants. In this study, we found that the rice sugar transporter OsSWEET11 is involved in the pathogenesis of sheath blight disease. Quantitative real-time polymerase chain reaction (qRT-PCR) and ß-d-glucuronidase expression analyses showed that R. solani infection significantly enhanced OsSWEET11 expression in leaves amongst the clade III SWEET members. The analyses of transgenic plants revealed that Ossweet11 mutants were less susceptible, whereas plants overexpressing OsSWEET11 were more susceptible, to sheath blight compared with wild-type controls, but the yield of OsSWEET11 mutants and overexpressors was reduced. SWEETs become active on oligomerization. Split-ubiquitin yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays showed that mutated OsSWEET11 interacted with normal OsSWEET11. In addition, expression of conserved residue mutated AtSWEET1 inhibited normal AtSWEET1 activity. To analyse whether inhibition of OsSWEET11 function in mesophyll cells is related to defence against this disease, mutated OsSWEET11 was expressed under the control of the Rubisco promoter, which is specific for green tissues. The resistance of transgenic plants to sheath blight disease, but not other disease, was improved, whereas yield production was not obviously affected. Overall, these results suggest that R. solani might acquire sugar from rice leaves by the activation of OsSWEET11 expression. The plants can be protected from infection by manipulation of the expression of OsSWEET11 without affecting the crop yield.


Asunto(s)
Células del Mesófilo/microbiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/microbiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Células del Mesófilo/metabolismo , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA