Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 862757, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967294

RESUMEN

VISTA (PD-1H) is an immune regulatory molecule considered part of the next wave of immuno-oncology targets. VISTA is an immunoglobulin (Ig) superfamily cell surface molecule mainly expressed on myeloid cells, and to some extent on NK cells and T cells. In previous preclinical studies, some VISTA-targeting antibodies provided immune inhibitory signals, while other antibodies triggered immune stimulatory signals. Importantly, for therapeutic antibodies, the isotype backbone can have a strong impact on antibody function. To elucidate the mode of action of immune stimulatory anti-VISTA antibodies, we studied three different anti-human VISTA antibody clones, each on three different IgG isotypes currently used for therapeutic antibodies: unaltered IgG1 (IgG1-WT), IgG1-KO (IgG1-LL234,235AA-variant with reduced Fc-effector function), and IgG4-Pro (IgG4- S228P-variant with stabilized hinge region). Antibody functionality was analysed in mixed leukocyte reaction (MLR) of human peripheral blood mononuclear cells (PBMCs), as a model system for ongoing immune reactions, on unstimulated human PBMCs, as a model system for a resting immune system, and also on acute myeloid leukemia (AML) patient samples to evaluate anti-VISTA antibody effects on primary tumor material. The functions of three anti-human VISTA antibodies were determined by their IgG isotype backbones. An MLR of healthy donor PBMCs was effectively augmented by anti-VISTA-IgG4-Pro and anti-VISTA-IgG1-WT antibodies, as indicated by increased levels of cytokines, T cell activation markers and T cell proliferation. However, in a culture of unstimulated PBMCs of single healthy donors, only anti-VISTA-IgG1-WT antibodies increased the activation marker HLA-DR on resting myeloid cells, and chemokine levels. Interestingly, interactions with different Fc-receptors were required for these effects, namely CD64 for augmentation of MLR, and CD16 for activation of resting myeloid cells. Furthermore, anti-VISTA-IgG1-KO antibodies had nearly no impact in any model system. Similarly, in AML patient samples, anti-VISTA-antibody on IgG4-Pro backbone, but not on IgG1-KO backbone, increased interactions, as a novel readout of activity, between immune cells and CD34+ AML cancer cells. In conclusion, the immune stimulatory effects of antagonistic anti-VISTA antibodies are defined by the antibody isotype and interaction with different Fc-gamma-receptors, highlighting the importance of understanding these interactions when designing immune stimulatory antibody therapeutics for immuno-oncology applications.


Asunto(s)
Antígenos B7/inmunología , Neoplasias , Receptores Fc , Humanos , Inmunoglobulina G , Leucocitos Mononucleares , Receptores de IgG
2.
J Pharm Sci ; 111(9): 2411-2421, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35760121

RESUMEN

Monoclonal antibodies, particularly IgGs and Ig-based molecules, are a well-established and growing class of biotherapeutic drugs. In order to improve efficacy, potency and pharmacokinetics of these therapeutic drugs, pharmaceutical industries have investigated significantly in engineering fragment crystallizable (Fc) domain of these drugs to optimize the interactions of these drugs and Fc gamma receptors (FcγRs) in recent ten years. The biological function of the therapeutics with the antibody-dependent cellular cytotoxicity (ADCC) enhanced double mutation (S239D/I332E) of isotype IgG1, the ADCC reduced double mutation (L234A/L235A) of isotype IgG1, and ADCC reduced isotype IgG4 has been well understood. However, limited information regarding the effect of these mutations or isotype difference on physicochemical properties (PCP), developability, and manufacturability of therapeutics bearing these different Fc regions is available. In this report, we systematically characterize the effects of the mutations and IgG4 isotype on conformation stability, colloidal stability, solubility, and storage stability at accelerated conditions in two buffer systems using six Fc variants. Our results provide a basis for selecting appropriate Fc region during development of IgG or Ig-based therapeutics and predicting effect of the mutations on CMC development process.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Receptores de IgG , Anticuerpos Monoclonales/química , Citotoxicidad Celular Dependiente de Anticuerpos/genética , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/química , Mutación , Receptores de IgG/química , Receptores de IgG/genética
3.
Int J Pharm ; 609: 121162, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34624444

RESUMEN

Antibodies targeting the CD40-CD40L pathway have great potential for treating autoimmune diseases like rheumatoid arthritis, systemic lupus erythematosus (SLE), lupus nephritis (LN), and inflammatory bowel diseases (IBD). However, in addition to the known difficulty in generating a purely antagonistic CD40 antibody, the presence of CD40 and CD40L on platelets creates additional unique challenges for the safety, target coverage, and clearance of antibodies targeting this pathway. Previously described therapeutic antibodies targeting this pathway have various shortcomings, and the full therapeutic potential of this axis has yet to be realized. Herein, we describe the generation and characterization of BI 655064, a novel, purely antagonistic anti-CD40 antibody that potently neutralizes CD40-CD40L-dependent B-cell stimulation without evidence of impacting platelet functions. This uniquely optimized antibody targeting a highly challenging pathway was obtained by applying stringent functional and biophysical criteria during the lead selection process. BI 655064 has favorable target-mediated drug disposition (TMDD)-saturation pharmacokinetics, consistent with that of a high-quality therapeutic monoclonal antibody.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Enfermedades Autoinmunes/tratamiento farmacológico , Linfocitos B , Antígenos CD40 , Ligando de CD40 , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico
4.
Int J Pharm ; 601: 120531, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33775727

RESUMEN

The main challenge to develop HCF for IgG and Ig-based therapeutics is to achieve essential solubility, viscosity and stability of these molecules in order to maintain product quality and meet regulatory requirement during manufacturing, production, storage, shipment and administration processes. The commonly used and FDA approved excipients for IgG and Ig -based therapeutics may no longer fulfil the challenge of HCF development for these molecules to certain extent, especially for some complex Ig-based platforms. 2-Hydroxypropyl beta-cyclodextrin (HP-ß-CD) is one of the promising excipients applied recently for HCF development of IgG and Ig-based therapeutics although it has been used for formulation of small synthesized chemical drugs for more than thirty years. This review describes essential aspects about application of HP-ß-CD as excipient in pharmaceutical formulation, including physico-chemical properties of HP-ß-CD, supply chain, regulatory, patent landscape, marketed drugs with HP-ß-CD, analytics and analytical challenges, stability and control strategies, and safety concerns. It also provides an overview of different studies, and outcomes thereof, regarding formulation development for IgGs and Ig-based molecules in liquid and solid (lyophilized) dosage forms with HP-ß-CD. The review specifically highlights the challenges for formulation manufacturing of IgG and Ig-based therapeutics with HP-ß-CD and identifies areas for future work in pharmaceutical and formulation development.


Asunto(s)
beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Excipientes , Inmunoglobulina G , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA