Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35329671

RESUMEN

In situ synthesis feasibility of ZrB2-SiC-ZrC composite coatings on ZrC ceramics by reactive plasma spraying (RPS) was investigated. To help to understand the phase evolution during plasma spraying process, reaction behavior in the ZrH2-Si-B4C system was explored carefully by differential scanning calorimetry. The results indicated that the phase transformation sequence in the ZrH2-Si-B4C system could be described as ZrH1.66, Zr3O, ZrC, ZrB2, Zr2Si, ZrSi, and SiC. The prior formation of ZrC was due to high diffusion rate of C atoms from B4C. ZrB2 was produced above 1100 °C. As the temperature increased, SiC were finally formed by the reaction of ZrC with ZrSi and B4C. The RPS composite coatings mainly consisted of ZrB2, SiC, and ZrC phases, except for a small fraction of ZrO2 phase. The microstructural characterization exhibited more dense melted splats, which appears to increase gradually with the increase in spraying currents and distances. The coatings had typical lamellar structure and adhered to the substrate well. The microhardness values were higher than 1000 HV1, but there were few variations with varying spraying currents and distances.

2.
J Chem Theory Comput ; 15(5): 2761-2773, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-30620582

RESUMEN

Molecular dynamics (MD) simulation has become a powerful tool for studying the structures and functional mechanisms of biomolecules, and its reliability crucially depends on the accuracy of underlying force fields. This perspective describes our recent efforts to develop more accurate protein force fields by improving the description of intrinsic conformational preferences of amino acid residues using residue-specific dihedral-angle-related parameters. Both backbone and side-chain conformational distributions and their coupling were optimized to fit those from a protein coil library. The resulting force fields RSFF1 and RSFF2 have been found to be more accurate than popular protein force fields, in reproducing experimental structural data of various peptides and proteins. They have also been successfully used in studying folding mechanisms and refinement of structure models. Further methodology developments related to intrinsically disordered proteins (RSFF2+) and a more universal implementation (RSFF2C) based on CMAP potentials are also described.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Proteínas/química , Aminoácidos/química , Biblioteca de Péptidos , Conformación Proteica , Pliegue de Proteína , Termodinámica
3.
J Phys Chem Lett ; 8(14): 3199-3205, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28651056

RESUMEN

An accurate potential energy model is crucial for biomolecular simulations. Despite many recent improvements of classical protein force fields, there are remaining key issues: much weaker temperature dependence of folding/unfolding equilibrium and overly collapsed unfolded or disordered states. For the latter problem, a new water model (TIP4P-D) has been proposed to correct the significantly underestimated water dispersion interactions. Here, using TIP4P-D, we reveal problems in current force fields through failures in folding model systems (a polyalanine peptide, Trp-cage, and the GB1 hairpin). By using residue-specific parameters to achieve better match between amino acid sequences and native structures and adding a small H-bond correction to partially compensate the missing many-body effects in α-helix formation, the new RSFF2+ force field with the TIP4P-D water model can excellently reproduce experimental melting curves of both α-helical and ß-hairpin systems. The RSFF2+/TIP4P-D method also gives less collapsed unfolded structures and describes well folded proteins simultaneously.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA