Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Nanomaterials (Basel) ; 14(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39269123

RESUMEN

Compared to traditional lithium metal batteries, anode-free lithium metal batteries use bare current collectors as an anode instead of Li metal, making them highly promising for mass production and achieving high-energy density. The current collector, as the sole component of the anode, is crucial in lithium deposition-stripping behavior and greatly impacts the rate of Li depletion from the cathode. In this study, to investigate the lithiophilicity effect of the current collector on the solid electrolyte interface (SEI) film construction and cycling performance of anode-free lithium batteries, various lightweight paper-based current collectors were prepared by electroless plating Cu and lipophilic Ag on low-dust paper (LDP). The areal densities of the as-prepared LDP@Cu, LDP@Cu-Ag, and LDP@Ag were approximately 0.33 mg cm-2. The use of lipophilic Ag-coated collectors with varying loadings allowed for the regulation of lipophilicity. The impacts of these collectors on the distribution of SEI components and Li depletion rate in common electrolytes were investigated. The findings suggest that higher loadings of lipophilic materials, such as Ag, on the current collector increase its lipophilicity but also lead to significant Li depletion during the cycling process in full-cell anode-free Li metal batteries. Thus, moderately lithiophilic current collectors, such as LDP@Cu-Ag, show more potential for Li deposition and striping and stable SEI with a low speed of Li depletion.

2.
Signal Transduct Target Ther ; 9(1): 225, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198425

RESUMEN

Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.


Asunto(s)
Enfermedades Autoinmunes , Estructuras Linfoides Terciarias , Humanos , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Estructuras Linfoides Terciarias/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/patología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/genética , Neoplasias/patología , Inflamación/inmunología , Inflamación/genética , Inflamación/patología , Tejido Linfoide/inmunología , Tejido Linfoide/patología , Animales , Citocinas/inmunología , Citocinas/genética
3.
Materials (Basel) ; 17(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39063798

RESUMEN

Flexible electrothermal heaters have attracted abundant attention in recent years due to their wide applications, but their preparation with high efficiency remains a challenge. Here in this work, a highly stable and bending-tolerant flexible heater was fabricated with graphite nanosheets and cellulose fibers through a scalable papermaking procedure. Its electrothermal property can be enhanced by a hot-pressing treatment and introduction of cationic polyacrylamide (CPAM) during the papermaking protocol. The flexible heater may quickly reach its maximum temperature of 239.8 °C in around 1 min at a voltage of 9 V. The power density was up to 375.3 °C cm2 w-1. It appeared to have a high tolerance for bending deformation with various curvatures, and the temperature remained stable even under 100 bending with frequency of around 0.17 Hz. Over 100 alternatively heating and cooling cycles, it worked stably as well. It was proved to be used as wearable heating equipment, soft heaters, and aircraft deicing devices, suggesting its great prospect in the field of heat management.

4.
Small ; : e2312256, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030979

RESUMEN

Polysulfide shuttle and sluggish sulfur redox kinetics remain key challenges in lithium-sulfur batteries. Previous researches have shown that introducing oxygen into transition metal sulfides helps to capture polysulfides and enhance their conversion kinetics. Based on this, further investigations are conducted to explore the impact of oxygen doping levels on the physical-chemical properties and electrocatalytic performance of MoS2. The findings reveal that MoS2 doped with high-content oxygen exhibits enhanced conductivity and polysulfides conversion kinetics compared to MoS2 with low-content oxygen doping, which can be attributed to the alteration of crystal structure from 2H-phase to the 1T-phase, the introduction of increased Li-O interactions, and the effect of defects resulting from high-oxygen doping. Consequently, the lithium-sulfur batteries using high-oxygen doped MoS2 as a catalyst deliver a high discharge capacity of 1015 mAh g-1 at 0.25C and maintain 78.5% capacity after 300 more cycles. Specifically, lithium-sulfur batteries employing paper-based electrodedemonstrate an areal capacity of 3.91 mAh cm-2 at 0.15C, even with sulfur loading of 4.1 mg cm-2 and electrolyte of 6.7 µL mg-1. These results indicate that oxygen doping levels can modify the properties of MoS2, and high-oxygen doped MoS2 shows promise as an efficient catalyst for lithium-sulfur batteries.

5.
Front Immunol ; 15: 1350560, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863702

RESUMEN

Background: Despite decades of effort, Plasmodium falciparum malaria remains a leading killer of children. The absence of a highly effective vaccine and the emergence of parasites resistant to both diagnosis as well as treatment hamper effective public health interventions. Methods and results: To discover new vaccine candidates, we used our whole proteome differential screening method and identified PfGBP130 as a parasite protein uniquely recognized by antibodies from children who had developed resistance to P. falciparum infection but not from those who remained susceptible. We formulated PfGBP130 as lipid encapsulated mRNA, DNA plasmid, and recombinant protein-based immunogens and evaluated the efficacy of murine polyclonal anti-PfGBP130 antisera to inhibit parasite growth in vitro. Immunization of mice with PfGBP130-A (aa 111-374), the region identified in our differential screen, formulated as a DNA plasmid or lipid encapsulated mRNA, but not as a recombinant protein, induced antibodies that inhibited RBC invasion in vitro. mRNA encoding the full ectodomain of PfGBP130 (aa 89-824) also generated parasite growth-inhibitory antibodies. Conclusion: We are currently advancing PfGBP130-A formulated as a lipid-encapsulated mRNA for efficacy evaluation in non-human primates.


Asunto(s)
Anticuerpos Antiprotozoarios , Eritrocitos , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Animales , Femenino , Humanos , Ratones , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Eritrocitos/parasitología , Eritrocitos/inmunología , Inmunización , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/genética
6.
Br J Oral Maxillofac Surg ; 62(5): 453-458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763853

RESUMEN

The nerve block is a safe and effective method to theat trigeminal neuralgia (TN). In terms of the V2 trigeminal neuralgia, the most difficult procedure in nerve block is accurate and fast greater palatine foramen (GPF) insertion. In this study, we developed a new technique using a personalised digital tooth-supported guide plate to increase insertion accuracy and success rates and reduce the pain of patients during injection. A total of 18 patients with TN (11 female and 7 male) were enrolled and treated between September 2020 and June 2022. Before injection, the guide plate was designed via Mimics three-dimensional (3D) reconstruction technology and printed via 3D printer. Then, all patients underwent maxillary nerve block with a guide plate for each injection. In this study, placement of all guide plates was completed within one minute and all punctures were successful the first time. The depth of the injection needle was over 2.5 cm in all cases and the guide plate was stability-supported by the maxillary teeth. The various pain scores had an obvious improvement. No patients presented symptoms of local anaesthetic toxicity or onset of new neurological sequelae. Using this new technology, we can significantly reduce the difficulty of GPF insertion and decrease patient pain during injection. The enhanced success rate of nerve block can achieve better therapeutic effect. For surgeons, personalised digital tooth-supported guide plates make the operation easier, especially for novice surgeons.


Asunto(s)
Bloqueo Nervioso , Impresión Tridimensional , Neuralgia del Trigémino , Humanos , Neuralgia del Trigémino/cirugía , Femenino , Masculino , Persona de Mediana Edad , Anciano , Bloqueo Nervioso/métodos , Bloqueo Nervioso/instrumentación , Nervio Maxilar , Paladar Duro/cirugía , Adulto , Anciano de 80 o más Años
7.
J Nanobiotechnology ; 22(1): 120, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500178

RESUMEN

Nanotechnology has demonstrated immense potential in various fields, especially in biomedical field. Among these domains, the development of nanotechnology for diagnosing and treating vascular anomalies has garnered significant attention. Vascular anomalies refer to structural and functional anomalies within the vascular system, which can result in conditions such as vascular malformations and tumors. These anomalies can significantly impact the quality of life of patients and pose significant health concerns. Nanoscale contrast agents have been developed for targeted imaging of blood vessels, enabling more precise identification and characterization of vascular anomalies. These contrast agents can be designed to bind specifically to abnormal blood vessels, providing healthcare professionals with a clearer view of the affected areas. More importantly, nanotechnology also offers promising solutions for targeted therapeutic interventions. Nanoparticles can be engineered to deliver drugs directly to the site of vascular anomalies, maximizing therapeutic effects while minimizing side effects on healthy tissues. Meanwhile, by incorporating functional components into nanoparticles, such as photosensitizers, nanotechnology enables innovative treatment modalities such as photothermal therapy and photodynamic therapy. This review focuses on the applications and potential of nanotechnology in the imaging and therapy of vascular anomalies, as well as discusses the present challenges and future directions.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Malformaciones Vasculares , Humanos , Medios de Contraste , Calidad de Vida , Nanotecnología , Nanoestructuras/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Nanopartículas/química , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/terapia , Nanomedicina/métodos
8.
Nanomaterials (Basel) ; 14(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38535632

RESUMEN

Lithium-sulfur (Li-S) batteries are expected to be one of the next generations of high-energy-density battery systems due to their high theoretical energy density of 2600 Wh kg-1. Embracing the trends toward flexibility, lightweight design, and cost-effectiveness, paper-based electrodes offer a promising alternative to traditional coated cathodes in Li-S batteries. Within paper-based electrodes, conductive fibers such as carbon nanotubes (CNTs) play a crucial role. They help to form a three-dimensional network within the paper matrix to ensure structural integrity over extended cycling while mitigating the shuttle effect by confining sulfur within the cathode. Herein, we explore how variously functionalized CNTs, serving as conductive fibers, impact the physical and electrochemical characteristics of paper-based sulfur cathodes in Li-S batteries. Specifically, graphitized hydroxylated carbon nanotubes (G-CNTs) exhibit remarkable capacity at low currents owing to their excellent conductivity and interaction with lithium polysulfide (LiPS), achieving the highest initial specific capacity of 1033 mAh g-1 at 0.25 C (1.1 mA cm-2). Aminated multi-walled carbon nanotubes (NH2-CNTs) demonstrate an enhanced affinity for LiPS due to the -NH2 groups. However, the uneven distribution of these fibers may induce electrode surface passivation during charge-discharge cycles. Notably, hydroxylated multi-walled carbon nanotubes (OH-CNTs) can establish a uniform and stable 3D network with plant fibers, showcasing superior mechanical properties and helping to mitigate Li2S agglomeration while preserving the electrode porosity. The paper-based electrode integrated with OH-CNTs even retains a specific capacity of approximately 800 mAh g-1 at about 1.25 C (5 mA cm-2), demonstrating good sulfur utilization and rate capacity compared to other CNT variants.

9.
Heliyon ; 10(5): e25832, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463831

RESUMEN

This paper reports a facile fabrication method of hydroxyapatite/chitosan (HAp/CS) composite scaffold with 3D porous structure without using any chemical cross-linkers. The HAp particles had an urchin-like hollow microstructure and high surface area, which was uniformly dispersed into the pore walls of the HAp/CS scaffold. The addition of HAp can efficiently enhance the mechanical properties and bioactivity of the HAp/CS scaffold. Moreover, periostin was successfully loaded onto the HAp/CS scaffold. When applied to the repair of bone defect in a rat mandibular model, the HAp/CS scaffold loaded with periostin can enhance osteointegration and accelerate bone regeneration. Our research combines periostin with the HAp/CS composite material, which provides a novel strategy to improve bone regeneration and has great application prospect in bone repair fields.

10.
Adv Mater ; 36(9): e2309339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37918968

RESUMEN

The development of advanced magnesium metal batteries (MMBs) has been hindered by longstanding challenges, such as the inability to induce uniform magnesium (Mg) nucleation and the inefficient utilization of Mg foil. This study introduces a novel solution in the form of a flexible, lightweight, paper-based scaffold that incorporates gradient conductivity, magnesiophilicity, and pore size. This design is achieved through an industrially adaptable papermaking process in which the ratio of carboxylated multi-walled carbon nanotubes to softwood cellulose fibers is meticulously adjusted. The triple-gradient structure of the scaffold enables the regulation of Mg ion flux, promoting bottom-up Mg deposition. Owing to its high flexibility, low thickness, and reduced density, the scaffold has potential applications in flexible and wearable electronics. Accordingly, the triple-gradient electrodes exhibit stable operation for over 1200 h at 3 mA cm-2 /3 mAh cm-2 in symmetrical cells, markedly outperforming the non-gradient and metallic Mg alternatives. Notably, this study marks the first successful fabrication of a flexible MMB pouch full cell, achieving an impressive volumetric energy density of 244 Wh L-1 . The simplicity and scalability of the triple-gradient design, which uses readily available materials through an industrially compatible papermaking process, open new doors for the production of flexible, high-energy-density metal batteries.

11.
Front Oncol ; 13: 1229197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397362
12.
Toxics ; 11(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235227

RESUMEN

To effectively carry out the bioremediation of a Pb2+ polluted environment, a lead-tolerant strain named D1 was screened from the activated sludge of a factory in Hefei, and its lead removal in a solution with Pb2+ concentration of 200 mg/L could reach 91% under optimal culture conditions. Morphological observation and 16S rRNA gene sequencing were used to identify D1 accurately, and its cultural characteristics and lead removal mechanism were also preliminarily studied. The results showed that the D1 strain was preliminarily identified as the Sphingobacterium mizutaii strain. The experiments conducted via orthogonal test showed that the optimal conditions for the growth of strain D1 were pH 7, inoculum volume 6%, 35 °C, and rotational speed 150 r/min. According to the results of scanning electron microscopy and energy spectrum analysis before and after the D1 exposure to lead, it is believed that the lead removal mechanism of D1 is surface adsorption. The Fourier transform infrared spectroscopy (FTIR) results revealed that multiple functional groups on the surface of the bacterial cells are involved in the Pb adsorption process. In conclusion, the D1 strain has excellent application prospects in the bioremediation of lead-contaminated environments.

13.
Nanomaterials (Basel) ; 13(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049238

RESUMEN

Silicon-based anode materials are considered one of the highly promising anode materials due to their high theoretical energy density; however, problems such as volume effects and solid electrolyte interface film (SEI) instability limit the practical applications. Herein, silicon nanoparticles (SiNPs) are used as the nucleus and anatase titanium dioxide (TiO2) is used as the buffer layer to form a core-shell structure to adapt to the volume change of the silicon-based material and improve the overall interfacial stability of the electrode. In addition, silver nanowires (AgNWs) doping makes it possible to form a conductive network structure to improve the conductivity of the material. We used the core-shell structure SiNPs@TiO2/AgNWs composite as an anode material for high-efficiency Li-ion batteries. Compared with the pure SiNPs electrode, the SiNPs@TiO2/AgNWs electrode exhibits excellent electrochemical performance with a first discharge specific capacity of 3524.2 mAh·g-1 at a current density of 400 mA·g-1, which provides a new idea for the preparation of silicon-based anode materials for high-performance lithium-ion batteries.

14.
Arterioscler Thromb Vasc Biol ; 43(5): 654-673, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36994729

RESUMEN

BACKGROUND: Infantile hemangioma (IH) arises as a result of dysregulation of both angiogenesis and vasculogenesis. The deubiquitylase OTUB1 (OTU domain, ubiquitin aldehyde binding 1) has been reported to play an essential role in multiple cancers; however, its function in the progression of IH and the underlying mechanisms regulating angiogenesis remain unclear. METHODS: Transwell assays, EdU assays, and tube formation assays were performed to investigate the biological behavior of IH in vitro. IH animal models were established to estimate the progression of IH in vivo. Mass spectrometric analysis were conducted to detect the downstream of OTUB1 and ubiquitination sites of transforming growth factor beta induced (TGFBI). Half-life assays and ubiquitination test were performed to investigate the interaction between TGFBI and OTUB1. Extracellular acidification rate assays were employed to estimate the glycolysis level in IH. RESULTS: The expression of OTUB1 was obviously increased in proliferating IH as compared to the involuting and involuted IH tissues. Through in vitro experiments, the knockdown of OTUB1 inhibited the proliferation, migration and tube formation of human hemangioma endothelial cells, while the overexpression of OTUB1 promoted the proliferation, migration and angiogenic abilities of human hemangioma endothelial cells. The knockdown of OTUB1 significantly suppressed IH progression in vivo. Furthermore, TGFBI was predicted as a functional downstream target of OTUB1 in IH by mass spectrometry. Mechanistically, OTUB1 interacted with and deubiquitylated TGFBI on the K22 and K25 residues, which was demonstrated to be independent of the catalytic activity of OTUB1. The inhibitory effects of OTUB1 knockdown on cell proliferation, migration and tube formation ability of human hemangioma endothelial cells were reversed by TGFBI overexpression. Further, we found that OTUB1 mediated glycolysis by regulating TGFBI in infantile hemangioma. CONCLUSIONS: OTUB1 deubiquitinates TGFBI in a catalytic-independent manner and promotes angiogenesis in infantile hemangioma by regulating glycolysis. Targeting OTUB1 might be an effective therapeutic strategy for inhibiting IH progression and tumor angiogenesis.


Asunto(s)
Células Endoteliales , Hemangioma , Animales , Humanos , Proliferación Celular , Células Endoteliales/metabolismo , Glucólisis , Hemangioma/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismo , Biocatálisis
15.
Polymers (Basel) ; 15(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36987114

RESUMEN

At present, the self-supporting paper-based electrode has some problems, such as low mechanical strength and insufficient flexibility, which restrict its application in flexible electronics. In this paper, FWF is used as the skeleton fiber, and the contact area and the number of hydrogen bonds of the fiber are increased by grinding the fiber and adding nanofibers to bridge it, and a level three gradient enhanced skeleton support network structure is constructed, which effectively improves the mechanical strength and foldability of the paper-based electrodes. The tensile strength of FWF15-BNF5 paper-based electrode is 7.4 MPa, the elongation at break is increased to 3.7%, the electrode thickness is as low as 66 µm, the electrical conductivities is 5.6 S cm-1, and the contact angle to electrolyte as low as 45°, which has excellent electrolyte wettability, flexibility, and foldability. After three-layer superimposed rolling, the discharge areal capacity reached 3.3 mAh cm-2 and 2.9 mAh cm-2 at the rate of 0.1 C and 1.5 C, respectively, which was superior to the commercial LFP electrode, it had good cycle stability, and the areal capacity was 3.0 mAh cm-2 and 2.8 mAh cm-2 after 100 cycles at the rate of 0.3 C and 1.5 C.

16.
J Hazard Mater ; 448: 130943, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860074

RESUMEN

Improvement of refractory nitrogen-containing organics biodegradation is crucial to meet discharged nitrogen standards and guarantee aquatic ecology safety. Although electrostimulation accelerates organic nitrogen pollutants amination, it remains uncertain how to strengthen ammonification of the amination products. This study demonstrated that ammonification was remarkably facilitated under micro-aerobic conditions through the degradation of aniline, an amination product of nitrobenzene, using an electrogenic respiration system. The microbial catabolism and ammonification were significantly enhanced by exposing the bioanode to air. Based on 16S rRNA gene sequencing and GeoChip analysis, our results indicated that aerobic aniline degraders and electroactive bacteria were enriched in suspension and inner electrode biofilm, respectively. The suspension community had a significantly higher relative abundance of catechol dioxygenase genes contributing to aerobic aniline biodegradation and reactive oxygen species (ROS) scavenger genes to protect from oxygen toxicity. The inner biofilm community contained obviously higher cytochrome c genes responsible for extracellular electron transfer. Additionally, network analysis indicated the aniline degraders were positively associated with electroactive bacteria and could be the potential hosts for genes encoding for dioxygenase and cytochrome, respectively. This study provides a feasible strategy to enhance nitrogen-containing organics ammonification and offers new insights into the microbial interaction mechanisms of micro-aeration assisted with electrogenic respiration.


Asunto(s)
Dioxigenasas , Aguas Residuales , ARN Ribosómico 16S , Aminas , Compuestos de Anilina , Respiración , Ciclo del Nitrógeno
17.
Cancer Sci ; 114(3): 806-821, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36369903

RESUMEN

Infantile hemangioma (IH) is the most common benign tumor in infancy. Propranolol, a nonselective ß-adrenergic receptor blocker, is now the first-line therapy for IH. Recently, low sensitivity to propranolol therapy has become one major reason for the failure of IH treatment. However, the exact underlying mechanisms are yet to be fully elucidated. Here, we reported that pyruvate kinase isoform M2 (PKM2), an essential glycolytic enzyme, played a critical role in regulating the progression of IH and the therapeutic resistance of propranolol treatment. Shikonin reversed the propranolol resistance in hemangioma-derived endothelial cells and in hemangioma animal models. Moreover, shikonin combined with propranolol could induce excessive reactive oxygen species (ROS) accumulation and lead to autophagic dysfunction, which is essential for the enhanced therapeutic sensitivity of propranolol treatment. Taken together, our results indicated that PKM2 has a significant role in hemangiomas progression and therapeutic resistance; it could be a safe and effective therapeutic strategy for those hemangiomas with poor propranolol sensitivity combined with shikonin.


Asunto(s)
Hemangioma , Neoplasias Cutáneas , Animales , Propranolol/farmacología , Especies Reactivas de Oxígeno , Piruvato Quinasa , Células Endoteliales/patología , Antagonistas Adrenérgicos beta/uso terapéutico , Hemangioma/tratamiento farmacológico , Resultado del Tratamiento , Neoplasias Cutáneas/tratamiento farmacológico
18.
J Craniofac Surg ; 34(2): e111-e113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35905499

RESUMEN

The fibula osteocutaneous flap is the most commonly used flap to repair jaw defects, which can be used for composite soft and hard tissue reconstruction. Traditionally, the skin paddle of the fibula osteocutaneous flap is based on perforators from the peroneal artery, which is affifixed to the posterior crural septum between the peroneus and the soleus. The anatomy is relatively constant, and the perforators of skin paddle variation encounter in clinical occasionally. The authors report a case of reconstruction of mandible and soft tissue with fibula osteocutaneous flap after extensive radical resection of squamous cell carcinoma of the mouth floor. In this case, the authors raised a skin paddle based on the anterior tibial perforator of peroneal artery from the anterolateral intermuscular septum between the peroneus and the anterior calf muscles, which successfully rescued the traditional perforator absence and avoided exploration for a second donor site.


Asunto(s)
Peroné , Procedimientos de Cirugía Plástica , Humanos , Peroné/irrigación sanguínea , Colgajos Quirúrgicos/irrigación sanguínea , Pierna/irrigación sanguínea , Arterias Tibiales
19.
Cancer Med ; 12(3): 2368-2377, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35933718

RESUMEN

BACKGROUND: No study has evaluated the impact of regimen on recurrence, metastasis and survival in patients with adenoid cystic carcinoma (ACC). The present study aimed to compare the efficacy of radioactive seed implantation and other regimens in treating ACC, so as to investigate the clinical applicability of radioactive seed implantation and determine the indications for this regimen. METHODS: A total of 188 patients with ACC in oromaxillofacial region were allocated to four groups according to the treatment regimen: group 1 was treated with a combination of surgery and 125 I seed therapy, group 2 with a combination of surgery and external radiotherapy, group 3 with surgery, whereas group 4 was untreated. The Kaplan-Meier method was used to assess the survival rates, and the Cox regression analyses were used to identify the associated prognostic factors. RESULTS: The overall survival rates of 188 patients and groups 1, 2, 3 and 4 were 85.7%, 75%, 68.2% and 37.5%, respectively. Cox regression analysis revealed that age, T stage, N stage and regimen were independent prognostic factors of survival. Amongst patients with primary ACC, the efficacy of radioactive seed implantation was higher in those with perineural invasion than in those without. CONCLUSION: Patient age, T stage, N stage and regimen are independent prognostic factors of survival in patients with ACC. Patients treated with surgery combined with postoperative 125 I seed radiotherapy have a higher overall survival rate, and those with perineural invasion are more suitable for radioactive seed implantation therapy.


Asunto(s)
Braquiterapia , Carcinoma Adenoide Quístico , Humanos , Carcinoma Adenoide Quístico/patología , Pronóstico , Análisis de Regresión , Terapia Combinada , Tasa de Supervivencia , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos
20.
Rev Cardiovasc Med ; 24(5): 127, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076744

RESUMEN

Background: Surgical treatment strategy for acute type A aortic dissection (aTAAD) with mesenteric malperfusion (MMP) is quite challenging as it is often associated with poor patient outcomes, and optimal management strategies remain controversial. Methods: We conducted MEDLINE and EMBASE database searches up to December 31, 2021 for studies on aTAAD with MMP. Data on study design, patient demographics, patient management strategy, mortality, complications, and follow-up were extracted, analyzed, and investigated. Results: Our literature search identified 941 potentially relevant studies, of which 19 were deemed eligible for this study. A total of 352 patients, mean age: 58.4 ± 11.9 years, diagnosed with aTAAD complicated with MMP were included with an overall prevalence of 4%. Patients for which MMP was observed preoperatively were also included in this analysis. The overall in-hospital mortality amongst these patients was 43.5%, and bowel necrosis and/or multiorgan failure were the major causes of death. Four management strategies for first-line treatment were recognized and these included central aortic repair (191, 54.3%), reperfusion of superior mesenteric artery (SMA) (121, 34.3%), exclusively endo-intervention (11, 3.1%), and exclusively medical intervention (29, 8.2%). These various first-line strategies showed mortality rates of 40.3%, 33.9%, 72.7% and 93.1%, respectively. There was no significant difference in the mortality rate between central aortic repair and reperfusion of SMA as first-line therapies ( χ 2 = 1.302, p = 0.254). When compared with central aortic repair and reperfusion of SMA, exclusively medical care exhibited a significantly greater mortality rate (p < 0.01). Conclusions: aTAAD complicated with MMP is a rare complication that carries a high mortality rate. Central aortic repair and reperfusion of SMA as first-line treatment strategies appear to be associated with better outcomes compared with exclusively endo-intervention and medical care. Clinical decisions may have introduced biases as no differences were indicated in regards to the way patients were being prioritized for the central aortic repair versus reperfusion of SMA. In regards to variable clinical features and pathology of aTAAD complicated with MMP, an individualized approach is recommended.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA