Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 20646, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244072

RESUMEN

Ischemic strokes cause devastating brain damage and functional deficits with few treatments available. Previous studies have shown that the ischemia-hypoxia rapidly induces clinically similar thrombosis and neuronal loss, but any resulting behavioral changes are largely unknown. The goal of this study was to evaluate motor and cognitive deficits in adult HI mice. Following a previously established procedure, HI mouse models were induced by first ligating the right common carotid artery and followed by hypoxia. Histological data showed significant long-term neuronal losses and reactive glial cells in the ipsilateral striatum and hippocampus of the HI mice. Whereas the open field test and the rotarod test could not reliably distinguish between the sham and HI mice, in the tapered beam and wire-hanging tests, the HI mice showed short-term and long-term deficits, as evidenced by the increased number of foot faults and decreased hanging time respectively. In cognitive tests, the HI mice swam longer distances and needed more time to find the platform in the Morris water maze test and showed shorter freezing time in fear contextual tests after fear training. In conclusion, this study demonstrates that adult HI mice have motor and cognitive deficits and could be useful models for preclinical stroke research.


Asunto(s)
Cognición/fisiología , Hipoxia-Isquemia Encefálica/fisiopatología , Actividad Motora/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Disfunción Cognitiva/fisiopatología , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Neuroglía/fisiología , Neuronas/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Trombosis/fisiopatología
2.
Stem Cell Reports ; 12(3): 488-501, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30745031

RESUMEN

We have previously developed a cocktail of nine small molecules to convert human fetal astrocytes into neurons, but a nine-molecule recipe is difficult for clinical applications. Here, we identify a chemical formula with only three to four small molecules for astrocyte-to-neuron conversion. We demonstrate that modulation of three to four signaling pathways among Notch, glycogen synthase kinase 3, transforming growth factor ß, and bone morphogenetic protein pathways is sufficient to change an astrocyte into a neuron. The chemically converted human neurons can survive >7 months in culture, fire repetitive action potentials, and display robust synaptic burst activities. Interestingly, cortical astrocyte-converted neurons are mostly glutamatergic, while midbrain astrocyte-converted neurons can yield some GABAergic neurons in addition to glutamatergic neurons. When administered in vivo through intracranial or intraperitoneal injection, the four-drug combination can significantly increase adult hippocampal neurogenesis. Together, human fetal astrocytes can be chemically converted into functional neurons using three to four small molecules, bringing us one step forward for developing future drug therapy.


Asunto(s)
Astrocitos/metabolismo , Feto/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Potenciales de Acción/fisiología , Células Cultivadas , Neuronas GABAérgicas/metabolismo , Glutamatos/metabolismo , Hipocampo/metabolismo , Humanos , Mesencéfalo/metabolismo , Neurogénesis/fisiología , Sinapsis/metabolismo
3.
Sci Rep ; 8(1): 8808, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29892075

RESUMEN

U0126 (1,4-diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene), a widely used mitogen-activated protein kinase kinase (MEK) inhibitor, was found to accelerate voltage-gated K+ channel (KV) inactivation in heterologous cells expressing several types of KV. The goal of this study was to examine whether U0126 at a concentration thought to specifically inhibit MEK signaling also inhibits KV in native neurons of primary cultures or brain slices. U0126 caused a dose-dependent inhibition of both the transient (IA) and sustained (IDR) components of K+ currents in hippocampal neurons. U0126 also exhibited much higher potency on the IA and IDR than the classical KV blockers 4-aminopyridine (4-AP) and tetraethylammonium (TEA). Consistent with its inhibitory effect on KV, U0126 broadened action potential duration, profoundly affected the repolarizing phase, and dramatically reduced firing frequency in response to current pulse injections. Despite the potent and reversible action of U0126 on Kv channels, PD98059, a structurally-unrelated MEK inhibitor, did not induce such an effect, suggesting U0126 may act independently of MEK inhibition. Together, these results raise cautions for using U0126 as a specific inhibitor for studying MEK signaling in neurons; on the other hand, further studies on the blocking mechanisms of U0126 as a potent inhibitor of KV may provide useful insights into the structure-function relationship of KV in general.


Asunto(s)
Butadienos/farmacología , Hipocampo/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Neuronas/enzimología , Nitrilos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp
4.
Mol Neurodegener ; 12(1): 73, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29017573

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, affecting millions of people worldwide. Although dysfunction of multiple neurotransmitter systems including cholinergic, glutamatergic and GABAergic systems has been associated with AD progression the underlying mechanisms remain elusive. We and others have recently found that GABA content is elevated in AD brains and linked to cognitive deficits in AD mouse models. The glutamic acid decarboxylase 67 (GAD67) is the major enzyme converting glutamate into GABA and has been implied in a number of neurological disorders such as epilepsy and schizophrenia. However, whether Gad67 is involved in AD pathology has not been well studied. Here, we investigate the functional role of GAD67 in an AD mouse model with Gad67 haploinsufficiency that is caused by replacing one allele of Gad67 with green fluorescent protein (GFP) gene during generation of GAD67-GFP mice. METHODS: To genetically reduce GAD67 in AD mouse brains, we crossed the Gad67 haploinsufficient mice (GAD67-GFP+/-) with 5xFAD mice (harboring 5 human familial AD mutations in APP and PS1 genes) to generate a new line of bigenic mice. Immunostaining, ELISA, electrophysiology and behavior test were applied to compare the difference between groups. RESULTS: We found that reduction of GAD67 resulted in a significant decrease of amyloid ß production in 5xFAD mice. Concurrently, the abnormal astrocytic GABA and tonic GABA currents, as well as the microglial reactivity were significantly reduced in the 5xFAD mice with Gad67 haploinsufficiency. Importantly, the olfactory memory deficit of 5xFAD mice was rescued by Gad67 haploinsufficiency. CONCLUSIONS: Our results demonstrate that GAD67 plays an important role in AD pathology, suggesting that GAD67 may be a potential drug target for modulating the progress of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Glutamato Descarboxilasa/genética , Placa Amiloide/patología , Enfermedad de Alzheimer/enzimología , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Haploinsuficiencia , Humanos , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Olfato/fisiología
5.
Cell Stem Cell ; 17(6): 735-747, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26481520

RESUMEN

We have recently demonstrated that reactive glial cells can be directly reprogrammed into functional neurons by a single neural transcription factor, NeuroD1. Here we report that a combination of small molecules can also reprogram human astrocytes in culture into fully functional neurons. We demonstrate that sequential exposure of human astrocytes to a cocktail of nine small molecules that inhibit glial but activate neuronal signaling pathways can successfully reprogram astrocytes into neurons in 8-10 days. This chemical reprogramming is mediated through epigenetic regulation and involves transcriptional activation of NEUROD1 and NEUROGENIN2. The human astrocyte-converted neurons can survive for >5 months in culture and form functional synaptic networks with synchronous burst activities. The chemically reprogrammed human neurons can also survive for >1 month in the mouse brain in vivo and integrate into local circuits. Our study opens a new avenue using chemical compounds to reprogram reactive glial cells into functional neurons.


Asunto(s)
Astrocitos/citología , Reprogramación Celular , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/citología , Células Cultivadas , Epigénesis Genética , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/citología , Transducción de Señal
6.
J Neurochem ; 112(3): 651-61, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19912469

RESUMEN

Regulators of G protein signaling (RGS) proteins negatively modulate G protein-coupled receptor (GPCR) signaling activity by accelerating G protein hydrolysis of GTP, hastening pathway shutoff. A wealth of data from cell culture experiments using exogenously expressed proteins indicates that RGS9 and other RGS proteins have the potential to down-regulate a significant number of pathways. We have used an array of biochemical and tissue staining techniques to examine the subcellular localization and membrane binding characteristics of endogenous RGS9-2 and known binding partners in rodent striatum and tissue homogenates. A small fraction of RGS9-2 is present in the soluble cytoplasmic fraction, whereas the majority is present primarily associated with the plasma membrane and structures insoluble in non-ionic detergents that efficiently extract the vast majority of its binding partners, R7BP and G(beta5). It is specifically excluded from the cell nucleus in mouse striatal tissue. In cultured striatal neurons, RGS9-2 is found at extrasynaptic sites primarily along the dendritic shaft near the spine neck. Heterogeneity in RGS9-2 detergent solubility along with its unique subcellular localization suggests that its mechanism of membrane anchoring and localization is complex and likely involves additional proteins beside R7BP. An important nuclear function for RGS9-2 seems unlikely.


Asunto(s)
Cuerpo Estriado/metabolismo , Proteínas RGS/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo/métodos , Cuerpo Estriado/citología , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Glutamato Descarboxilasa/metabolismo , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Unión Proteica , Proteínas RGS/deficiencia , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/metabolismo , Sinapsis/metabolismo , Factor de Transcripción TFIID/metabolismo
7.
Kidney Int ; 75(7): 719-26, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19177155

RESUMEN

Hypertension develops in many patients receiving the immunosuppressive drug tacrolimus (FK506). One possible mechanism for hypertension is a reduction in vasodilatory nitric oxide. We found that tacrolimus and a calcineurin autoinhibitory peptide significantly decreased vascular calcineurin activity; however, only tacrolimus altered intracellular calcium release in mouse aortic endothelial cells. In mouse aortas, incubation with tacrolimus increased protein kinase C activity and basal endothelial nitric oxide synthase phosphorylation at threonine 495 but reduced basal and agonist-induced endothelial nitric oxide synthase phosphorylation at serine 1177, a mechanism known to inhibit synthase activity. While this decreased nitric oxide production and endothelial function, the calcineurin autoinhibitory peptide had no such effects. Inhibition of ryanodine receptor opening or protein kinase C blocked the effects of tacrolimus. Since it is known that the FK506 binding protein (FKBP12/12.6) interacts with the ryanodine receptor to regulate calcium release, we propose this as the mechanism by which tacrolimus alters intracellular calcium and endothelial nitric oxide synthase rather than by its effect on calcineurin. Our study shows that prevention of the tacrolimus-induced intracellular calcium leak may attenuate endothelial dysfunction and the consequent hypertension.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Tacrolimus/farmacología , Proteínas Adaptadoras Transductoras de Señales , Animales , Aorta/citología , Calcineurina , Calcio/metabolismo , Células Endoteliales , Hipertensión/inducido químicamente , Péptidos y Proteínas de Señalización Intracelular , Ratones , Fosfoproteínas , Fosforilación , Proteína Quinasa C/metabolismo , Canal Liberador de Calcio Receptor de Rianodina
8.
Neurosci Lett ; 429(2-3): 111-4, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-17996369

RESUMEN

The amphibian telencephalic striatum as a major component of the basal ganglia receives multisensory information and projects to the tegmentum and other structures. However, how striatal neurons modulate tegmental activity remains unknown. Here, we show by using intracellular recording and staining in toads that electrical stimulation of the ipsilateral striatum evoked an inhibitory postsynaptic potential (IPSP) in presumably binocular tegmental neurons. Seventy-one neurons were intracellularly stained with Lucifer yellow or horseradish peroxidase. They were located in the anterodorsal tegmental nucleus, anteroventral tegmental nucleus, nucleus profundus mesencephali, and superficial isthmal reticular nucleus, with axons projecting to the tectum, nucleus isthmi, and spinal cord. It appears that the striatum can control visually guided behaviors through the striato-tegmento-spinal pathway and the tegmento-spinal pathway mediated by the tectum and nucleus isthmi.


Asunto(s)
Axones/fisiología , Bufo bufo/fisiología , Cuerpo Estriado/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Techo del Mesencéfalo/fisiología , Tegmento Mesencefálico/fisiología , Animales , Axones/ultraestructura , Evolución Biológica , Bufo bufo/anatomía & histología , Forma de la Célula , Colorantes , Cuerpo Estriado/citología , Dendritas/fisiología , Dendritas/ultraestructura , Estimulación Eléctrica , Peroxidasa de Rábano Silvestre , Potenciales Postsinápticos Inhibidores/fisiología , Isoquinolinas , Inhibición Neural/fisiología , Vías Nerviosas/citología , Neuronas/citología , Desempeño Psicomotor/fisiología , Especificidad de la Especie , Médula Espinal/fisiología , Sustancia Negra/citología , Sustancia Negra/fisiología , Transmisión Sináptica/fisiología , Techo del Mesencéfalo/citología , Tegmento Mesencefálico/citología , Visión Binocular/fisiología
9.
Arterioscler Thromb Vasc Biol ; 27(7): 1580-6, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17478757

RESUMEN

OBJECTIVES: FK506 Binding Protein 12 and its related isoform 12.6 (FKBP12/12.6) stabilize a closed state of intracellular Ca2+ release channels (ryanodine receptors [RyRs]), and in myocytes removal of FKBP12/12.6 from RyRs alters intracellular Ca2+ levels. The immunosuppressive drugs rapamycin and FK506 bind and displace FKBP12/12.6 from RyRs, and can also cause endothelial dysfunction and hypertension. We tested whether rapamycin and FK506 cause an intracellular Ca2+ leak in endothelial cells and whether this affects endothelial function and blood pressure regulation. METHODS AND RESULTS: Rapamycin or FK506 concentration-dependently caused a Ca2+ leak in isolated endothelial cells, decreased aortic NO production and endothelium-dependent dilation, and increased systolic blood pressure in control mice. Rapamycin or FK506 at 10 micromol/L abolished aortic NO production and endothelium-dependent dilation. Similar results were obtained in isolated endothelial cells and aortas from FKBP12.6-/- mice after displacement of FKBP12 with 1 micromol/L rapamycin or FK506. In hypertensive FKBP12.6-/- mice, systolic blood pressures were further elevated after treatment with either rapamycin or FK506. Blockade of the Ca2+ leak with ryanodine normalized NO production and endothelium-dependent dilation. CONCLUSIONS: Complete removal of FKBP12 and 12.6 from endothelial RyRs induces an intracellular Ca2+ leak which may contribute to the pathogenesis of endothelial dysfunction and hypertension caused by rapamycin or FK506.


Asunto(s)
Células Endoteliales/citología , Óxido Nítrico/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sirolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Tacrolimus/farmacología , Animales , Canales de Calcio/efectos de los fármacos , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Eliminación de Gen , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Óxido Nítrico/genética , Sensibilidad y Especificidad , Vasoconstricción/fisiología , Vasodilatación/fisiología
10.
Hypertension ; 49(3): 569-76, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17261647

RESUMEN

Chronic treatment with the immunosuppressive drug rapamycin leads to hypertension; however, the mechanisms are unknown. Rapamycin binds FK506 binding protein 12 and its related isoform 12.6 (FKBP12/12.6) and displaces them from intracellular Ca2+ release channels (ryanodine receptors) eliciting a Ca2+ leak from the endoplasmic/sarcoplasmic reticulum. We tested whether this Ca2+ leak promotes conventional protein kinase C-mediated endothelial NO synthase phosphorylation at Thr495, which reduces production of the vasodilator NO. Rapamycin treatment of control mice for 7 days, as well as genetic deletion of FKBP12.6, increased systolic arterial pressure significantly compared with controls. Untreated aortas from FKBP12.6-/- mice and in vitro rapamycin-treated control aortas had similarly decreased endothelium-dependent relaxation responses and NO production and increased endothelial NO synthase Thr495 phosphorylation and protein kinase C activity. Inhibition of either conventional protein kinase C or ryanodine receptor restored endothelial NO synthase Thr495 phosphorylation and endothelial function to control levels. Rapamycin induced a small increase in basal intracellular Ca2+ levels in isolated endothelial cells, and rapamycin or FKBP12.6 gene deletion decreased acetylcholine-induced intracellular Ca2+ release, all of which were reversed by ryanodine. These data demonstrate that displacement of FKBP12/12.6 from ryanodine receptors induces an endothelial intracellular Ca2+ leak and increases conventional protein kinase C-mediated endothelial NO synthase Thr495 phosphorylation leading to decreased NO production and endothelial dysfunction. This molecular mechanism may, in part, explain rapamycin-induced hypertension.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Inmunosupresores/efectos adversos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Sirolimus/efectos adversos , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Calcio/metabolismo , Endotelio Vascular/efectos de los fármacos , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Isoformas de Proteínas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas de Unión a Tacrolimus/deficiencia , Treonina/metabolismo
11.
Neurobiol Learn Mem ; 87(3): 372-84, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17129739

RESUMEN

Superoxide has been shown to be critically involved in several pathological manifestations of aging animals. In contrast, superoxide also can act as a signaling molecule to modulate signal transduction cascades required for hippocampal synaptic plasticity. Mitochondrial superoxide dismutase (SOD-2 or Mn-SOD) is a key antioxidant enzyme that scavenges superoxide. Thus, SOD-2 may not only prevent aging-related oxidative stress, but may also regulate redox signaling in young animals. We used transgenic mice overexpressing SOD-2 to study the role of mitochondrial superoxide in aging, synaptic plasticity, and memory-associated behavior. We found that overexpression of SOD-2 had no obvious effect on synaptic plasticity and memory formation in young mice, and could not rescue the age-related impairments in either synaptic plasticity or memory in old mice. However, SOD-2 overexpression did decrease mitochondrial superoxide in hippocampal neurons, and extended the lifespan of the mice. These findings increase our knowledge of the role of mitochondrial superoxide in physiological and pathological processes in the brain.


Asunto(s)
Hipocampo/enzimología , Potenciación a Largo Plazo/fisiología , Longevidad/fisiología , Memoria/fisiología , Superóxido Dismutasa/metabolismo , Análisis de Varianza , Animales , Ratones , Ratones Transgénicos , Mitocondrias/enzimología
12.
J Neurochem ; 99(4): 1207-23, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17026528

RESUMEN

The somatodendritic A-current, I(SA), in hippocampal CA1 pyramidal neurons regulates the processing of synaptic inputs and the amplitude of back propagating action potentials into the dendritic tree, as well as the action potential firing properties at the soma. In this study, we have used RNA interference and over-expression to show that expression of the Kv4.2 gene specifically regulates the I(SA) component of A-current in these neurons. In dissociated hippocampal pyramidal neuron cultures, or organotypic cultured CA1 pyramidal neurons, the expression level of Kv4.2 is such that the I(SA) channels are maintained in the population at a peak conductance of approximately 950 pS/pF. Suppression of Kv4.2 transcripts in hippocampal pyramidal neurons using an RNA interference vector suppresses I(SA) current by 60% in 2 days, similar to the effect of expressing dominant-negative Kv4 channel constructs. Increasing the expression of Kv4.2 in these neurons increases the level of I(SA) to 170% of the normal set point without altering the biophysical properties. Our results establish a specific role for native Kv4.2 transcripts in forming and maintaining I(SA) current at characteristic levels in hippocampal pyramidal neurons.


Asunto(s)
Potenciales de Acción/genética , Hipocampo/metabolismo , Células Piramidales/metabolismo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Células COS , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Cultivadas , Chlorocebus aethiops , Dendritas/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/genética , Vectores Genéticos/genética , Hipocampo/efectos de los fármacos , Hipocampo/ultraestructura , Microscopía Electrónica de Transmisión , Técnicas de Cultivo de Órganos , Células Piramidales/efectos de los fármacos , Células Piramidales/ultraestructura , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shal/efectos de los fármacos , Transmisión Sináptica/genética
13.
J Neurosci Methods ; 158(2): 224-33, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16834994

RESUMEN

Commercially available mini-gels for sodium dodecyl sulphate (SDS)-PAGE and Western blotting are limited both by the number of lanes that can be loaded per gel and the minimum amount of protein per lane that must be loaded. Here we describe a method for loading protein samples onto existing commercially available mini-gels that allows loading of 50 or more lanes per gel. The enhanced sensitivity of the method allows Western blotting with sub-microgram quantities of protein. Samples are loaded onto filter paper strips mounted on a plastic backing sheet, and film-wrapped strips on a separate dummy loader interdigitate with the sample strips, creating a physical barrier to lateral diffusion. The sample loader sandwich is placed on top of the stacking gel, and is compatible with all commercially available SDS-PAGE systems. Comparison of 15-lane mini-gels with 30-lane micro-loader strips reveals up to a 10-fold increase in sensitivity with the new method. Using 50- and 66-lane micro-loaders, sub-microgram quantities of protein produce reliable and quantifiable signal by Western blotting. Manipulation of the ionic conditions within dummy loader strips provides a mechanism for enhancing lateral resolution, allowing for the possibility of further miniaturization.


Asunto(s)
Western Blotting/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Proteínas del Tejido Nervioso/análisis , Anticuerpos/análisis , Indicadores y Reactivos , Peso Molecular , Nanotecnología
14.
J Neurosci ; 25(49): 11288-99, 2005 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-16339024

RESUMEN

Dendritic arborization and spine formation are critical for the functioning of neurons. Although many proteins have been identified recently as regulators of dendritic morphogenesis, the intracellular signaling pathways that control these processes are not well understood. Here we report that the Ras-phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway plays pivotal roles in the regulation of many aspects of dendrite formation. Whereas the PI3K-Akt-mTOR pathway alone controlled soma and dendrite size, a coordinated activation together with the Ras-mitogen-activated protein kinase signaling pathway was required for increasing dendritic complexity. Chronic inhibition of PI3K or mTOR reduced soma and dendrite size and dendritic complexity, as well as density of dendritic filopodia and spines, whereas a short-term inhibition promoted the formation of mushroom-shaped spines on cells expressing constitutively active mutants of Ras, PI3K, or Akt, or treated with the upstream activator BDNF. Together, our data underscore the central role of a spatiotemporally regulated key cell survival and growth pathway on trophic regulation of the coordinated development of dendrite size and shape.


Asunto(s)
Dendritas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas ras/fisiología , Animales , Células Cultivadas , Dendritas/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Morfogénesis/efectos de los fármacos , Morfogénesis/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ratas , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
15.
Neuron ; 47(1): 85-100, 2005 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-15996550

RESUMEN

Neurabin and spinophilin are homologous protein phosphatase 1 and actin binding proteins that regulate dendritic spine function. A yeast two-hybrid analysis using the coiled-coil domain of neurabin revealed an interaction with Lfc, a Rho GEF. Lfc was highly expressed in brain, where it interacted with either neurabin or spinophilin. In neurons, Lfc was largely found in the shaft of dendrites in association with microtubules but translocated to spines upon neuronal stimulation. Moreover, expression of Lfc resulted in reduction in spine length and size. Both the translocation and the effect on spine morphology depended on the coiled-coil domain of Lfc. Coexpression of neurabin or spinophilin with Lfc resulted in their clustering together with F-actin, a process that depended on Rho activity. Thus, interaction between Lfc and neurabin/spinophilin selectively regulates Rho-dependent organization of F-actin in spines and is a link between the microtubule and F-actin cytoskeletons in dendrites.


Asunto(s)
Dendritas/ultraestructura , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Microfilamentos/fisiología , Proteínas del Tejido Nervioso/fisiología , Actinas/metabolismo , Actinas/fisiología , Animales , Química Encefálica , Carbocianinas , Colorantes , ADN Complementario/biosíntesis , ADN Complementario/genética , Dendritas/metabolismo , Dendritas/fisiología , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Faloidina , Ratas , Transfección
16.
Mol Cell Neurosci ; 29(1): 97-106, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15866050

RESUMEN

Superoxide has been shown to be critical for hippocampal long-term potentiation (LTP) and hippocampus-dependent memory function. A possible source for the generation of superoxide during these processes is NADPH oxidase. The active oxidase consists of two membrane proteins, gp91phox and p22phox, and four cytosolic proteins, p40phox, p47phox, p67phox, and Rac. Upon stimulation, the cytosolic proteins translocate to the membrane to form a complex with the membrane components, which results in production of superoxide. Here, we determined the presence, localization, and functionality of a NADPH oxidase in mouse hippocampus by examining the NADPH oxidase proteins as well as the production of superoxide. All of the NADPH oxidase proteins were present in hippocampal homogenates and enriched in synaptoneurosome preparations. Immunocytochemical analysis of cultured hippocampal neurons indicated that all NADPH oxidase proteins were localized in neuronal cell bodies as well as dendrites. Furthermore, double labeling analysis using antibodies to p67phox and the presynaptic marker synaptophysin suggest a close association of the NADPH oxidase subunits with synaptic sites. Finally, stimulation of hippocampal slices with phorbol esters triggered translocation of the cytoplasmic NADPH oxidase proteins to the membrane and an increase in superoxide production that was blocked by inhibitors of NADPH oxidase. Taken together, our data suggest that NADPH oxidase is present in mouse hippocampus and might be the source of superoxide production required for LTP and memory function.


Asunto(s)
Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , NADPH Oxidasas/metabolismo , Sinapsis/enzimología , Animales , Transporte Biológico/efectos de los fármacos , Citosol/enzimología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Ésteres del Forbol/farmacología , Fracciones Subcelulares/enzimología , Superóxidos/metabolismo
17.
J Neurosci ; 24(14): 3643-54, 2004 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-15071113

RESUMEN

Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylation sites as Ser438 and Ser459. To test whether CaMKII phosphorylation of Kv4.2 affects channel biophysics, we expressed wild-type or mutant Kv4.2 and the K(+) channel interacting protein, KChIP3, with or without a constitutively active form of CaMKII in Xenopus oocytes and measured the voltage dependence of activation and inactivation in each of these conditions. CaMKII phosphorylation had no effect on channel biophysical properties. However, we found that levels of Kv4.2 protein are increased with CaMKII phosphorylation in transfected COS cells, an effect attributable to direct channel phosphorylation based on site-directed mutagenesis studies. We also obtained corroborating physiological data showing increased surface A-type channel expression as revealed by increases in peak K(+) current amplitudes with CaMKII phosphorylation. Furthermore, endogenous A-currents in hippocampal pyramidal neurons were increased in amplitude after introduction of constitutively active CaMKII, which results in a decrease in neuronal excitability in response to current injections. Thus CaMKII can directly modulate neuronal excitability by increasing cell-surface expression of A-type K(+) channels.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Potasio/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Técnicas de Transferencia de Gen , Hipocampo/citología , Proteínas de Interacción con los Canales Kv , Mutagénesis Sitio-Dirigida , Neuronas/citología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fosforilación , Canales de Potasio/genética , Células Piramidales/citología , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Canales de Potasio Shal , Regulación hacia Arriba/fisiología , Xenopus
18.
J Comp Neurol ; 459(4): 392-406, 2003 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-12687706

RESUMEN

Excitatory and inhibitory interneurons play a key role in the establishment of neuronal responses and circuit properties in the brain. Despite their importance in brain function, the structural development of interneurons has not been well studied. We used in vivo time-lapse imaging in intact anesthetized Xenopus tadpoles to determine the morphological events underlying the development of interneuron dendritic arbor structure. Single optic tectal neurons were labeled with DiI and imaged at daily intervals over 4 days in intact albino Xenopus tadpoles. The same neurons were also imaged at shorter intervals to determine the dynamic rearrangements in arbor branches that accompany large-scale arbor growth. Tectal interneurons, like projection neurons, develop from neuroepithelial cells located near the ventricular layer. They elaborate complex dendritic arbors over a period of 2 days. Short-interval time-lapse images reveal that tectal interneuron arbors have rapid rates of branch additions and retractions. We identified four patterns of interneuron arbor development, based on the cell morphology and types of structural rearrangements that occur over the development of the neuronal arbor. A surprising feature of interneuronal development is the large extent of structural rearrangements: many interneurons extend transient processes so that the neuronal structure is dramatically different from one day to the next. Because the majority of synaptic contacts are formed on dendrites, the structural changes we observed in interneuronal dendritic arbors suggest that optic tectal circuits are extremely plastic during early stages of development.


Asunto(s)
Imagenología Tridimensional/métodos , Interneuronas/citología , Interneuronas/fisiología , Colículos Superiores/citología , Colículos Superiores/crecimiento & desarrollo , Animales , Dendritas/fisiología , Xenopus laevis
19.
Am J Physiol Heart Circ Physiol ; 285(1): H442-8, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12663264

RESUMEN

Cardiomyocytes of the failing heart undergo profound phenotypic and structural changes that are accompanied by variations in the genetic program and profile of calcium homeostatic proteins. The underlying mechanisms for these changes remain unclear. Because the mammalian counterpart of the fish calcium-regulating hormone stanniocalcin-1 (STC1) is expressed in the heart, we reasoned that STC1 might play a role in the adaptive-maladaptive processes that lead to the heart failure phenotype. We examined the expression and localization of STC1 in cardiac tissue of patients with advanced heart failure before and after mechanical unloading using a left ventricular assist device (LVAD), and we compared the results with those of normal heart tissue. STC1 protein is markedly upregulated in cardiomyocytes and arterial walls of failing hearts pre-LVAD and is strikingly reduced after LVAD treatment. STC1 is diffusely expressed in cardiomyocytes, although nuclear predominance is apparent. Addition of recombinant STC1 to the medium of cultured rat cardiomyocytes slows their endogenous beating rate and diminishes the rise in intracellular calcium with each contraction. Furthermore, using whole cell patch-clamp studies in cultured rat cardiomyocytes, we find that addition of STC1 to the bath causes reversible inhibition of transmembrane calcium currents through L-channels. Our data suggest differential regulation of myocardial STC1 protein expression in heart failure. In addition, STC1 may regulate calcium currents in cardiomyocytes and may contribute to the alterations in calcium homeostasis of the failing heart.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Glicoproteínas/fisiología , Insuficiencia Cardíaca/metabolismo , Hormonas/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Calcio/fisiología , Células Cultivadas , Vasos Coronarios/metabolismo , Glicoproteínas/genética , Homeostasis/fisiología , Hormonas/genética , Humanos , Inmunohistoquímica , Hibridación in Situ , Músculo Liso Vascular/metabolismo , Miocardio/citología , Miocitos Cardíacos/efectos de los fármacos , Nimodipina/farmacología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Fluorescencia , Función Ventricular Izquierda/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA