Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 2184, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778126

RESUMEN

Cereal cyst nematode (CCN, Heterodera avenae) presents severe challenges to wheat (Triticum aestivum L.) production worldwide. An investigation of the interaction between wheat and CCN can greatly improve our understanding of how nematodes alter wheat root metabolic pathways for their development and could contribute to new control strategies against CCN. In this study, we conducted transcriptome analyses of wheat cv. Wen 19 (Wen19) by using RNA-Seq during the compatible interaction with CCN at 1, 3 and 8 days past inoculation (dpi). In total, 71,569 transcripts were identified, and 10,929 of them were examined as differentially expressed genes (DEGs) in response to CCN infection. Based on the functional annotation and orthologous findings, the protein phosphorylation, oxidation-reduction process, regulation of transcription, metabolic process, transport, and response process as well as many other pathways previously reported were enriched at the transcriptional level. Plant cell wall hydrolysis and modifying proteins, auxin biosynthesis, signalling and transporter genes were up-regulated by CCN infection to facilitate penetration, migration and syncytium establishment. Genes responding to wounding and jasmonic acid stimuli were enriched at 1 dpi. We found 16 NBS-LRR genes, 12 of which were down-regulated, indicating the repression of resistance. The expression of genes encoding antioxidant enzymes, glutathione S-transferases and UDP-glucosyltransferase was significantly up-regulated during CCN infection, indicating that they may play key roles in the compatible interaction of wheat with CCN. Taken together, the results obtained from the transcriptome analyses indicate that the genes involved in oxidation-reduction processes, induction and suppression of resistance, metabolism, transport and syncytium establishment may be involved in the compatible interaction of Wen 19 with CCN. This study provides new insights into the responses of wheat to CCN infection. These insights could facilitate the elucidation of the potential mechanisms of wheat responses to CCN.


Asunto(s)
Grano Comestible/genética , Grano Comestible/parasitología , Triticum/genética , Triticum/parasitología , Tylenchoidea/patogenicidad , Animales , Grano Comestible/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/fisiología , Redes y Vías Metabólicas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , RNA-Seq , Triticum/metabolismo
2.
Phytopathology ; 108(2): 264-274, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28945520

RESUMEN

Few molecular details of effectors of Heterodera avenae parasitism are known. We performed a high-throughput sequencing analysis of the H. avenae transcriptome at five developmental stages. A total of 82,549 unigenes were ultimately obtained, and 747 transcripts showed best hits to genes putatively encoding carbohydrate-active enzymes in plant-parasitic nematodes that play an important role in the invasion process. A total of 1,480 unigenes were homologous to known phytonematode effectors, and 63 putative novel effectors were identified in the H. avenae transcriptomes. Twenty-three unigenes were analyzed by qRT-PCR and confirmed to be highly expressed during at least one developmental stage. For in situ hybridization, 17 of the 22 tested putative effectors were specifically expressed and located in the subventral gland cells, and five putative novel effectors were specifically expressed in the dorsal gland. Furthermore, 115 transcripts were found to have putative lethal RNA interference (RNAi) phenotypes. Three target genes with lethal RNAi phenotypes and two of the four tested putative effectors were associated with a decrease in the number of cysts through in vitro RNAi technology. These transcriptomic data lay a foundation for further studies of interactions of H. avenae with cereal and H. avenae parasitic control.


Asunto(s)
Grano Comestible/parasitología , Proteínas del Helminto/genética , Enfermedades de las Plantas/parasitología , Transcriptoma , Tylenchoidea/genética , Animales , Femenino , Hibridación in Situ , Óvulo , Fenotipo , Interferencia de ARN , Análisis de Secuencia de ARN , Tylenchoidea/citología , Tylenchoidea/crecimiento & desarrollo
3.
BMC Genomics ; 16: 801, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26475271

RESUMEN

BACKGROUND: Cereal cyst nematode Heterodera avenae, an important soil-borne pathogen in wheat, causes numerous annual yield losses worldwide, and use of resistant cultivars is the best strategy for control. However, target genes are not readily available for breeding resistant cultivars. Therefore, comparative transcriptomic analyses were performed to identify more applicable resistance genes for cultivar breeding. METHODS: The developing nematodes within roots were stained with acid fuchsin solution. Transcriptome assemblies and redundancy filteration were obtained by Trinity, TGI Clustering Tool and BLASTN, respectively. Gene Ontology annotation was yielded by Blast2GO program, and metabolic pathways of transcripts were analyzed by Path_finder. The ROS levels were determined by luminol-chemiluminescence assay. The transcriptional gene expression profiles were obtained by quantitative RT-PCR. RESULTS: The RNA-sequencing was performed using an incompatible wheat cultivar VP1620 and a compatible control cultivar WEN19 infected with H. avenae at 24 h, 3 d and 8 d. Infection assays showed that VP1620 failed to block penetration of H. avenae but disturbed the transition of developmental stages, leading to a significant reduction in cyst formation. Two types of expression profiles were established to predict candidate resistance genes after developing a novel strategy to generate clean RNA-seq data by removing the transcripts of H. avenae within the raw data before assembly. Using the uncoordinated expression profiles with transcript abundance as a standard, 424 candidate resistance genes were identified, including 302 overlapping genes and 122 VP1620-specific genes. Genes with similar expression patterns were further classified according to the scales of changed transcript abundances, and 182 genes were rescued as supplementary candidate resistance genes. Functional characterizations revealed that diverse defense-related pathways were responsible for wheat resistance against H. avenae. Moreover, phospholipase was involved in many defense-related pathways and localized in the connection position. Furthermore, strong bursts of reactive oxygen species (ROS) within VP1620 roots infected with H. avenae were induced at 24 h and 3 d, and eight ROS-producing genes were significantly upregulated, including three class III peroxidase and five lipoxygenase genes. CONCLUSIONS: Large-scale identification of wheat resistance genes were processed by comparative transcriptomic analysis. Functional characterization showed that phospholipases associated with ROS production played vital roles in early defense responses to H. avenae via involvement in diverse defense-related pathways as a hub switch. This study is the first to investigate the early defense responses of wheat against H. avenae, not only provides applicable candidate resistance genes for breeding novel wheat cultivars, but also enables a better understanding of the defense mechanisms of wheat against H. avenae.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Transcriptoma/genética , Triticum/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Anotación de Secuencia Molecular , Enfermedades de las Plantas/parasitología , Análisis de Secuencia de ARN , Triticum/parasitología , Tylenchoidea/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA