Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 88(9): 1545-57, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21669687

RESUMEN

An assemblage of 33 fossil pollen and spores, recovered from the 3600-m high Pislepampa locality of E. W. Berry, Eastern Cordillera, Bolivia, adds considerably to our knowledge of three aspects of the region in late Neogene time: (1) the paleovegetation, (2) the paleoclimate, and (3) the paleoelevation of the Central Andes. The plant microfossils recognized are Isoetes, Lycopodium (three types), Cnemidaria, Cyathea (three types), Grammitis, Hymenophyllum, Pteris, trilete fern spores (two types), Danaea, monolete fern spores (four types), Podocarpus, Gramineae, Palmae, Ilex, cf. Oreopanax, Cavanillesia, cf. Pereskia, Compositae (three types), Ericaceae, Tetrorchidium, and unknowns (three types). The diversity of the Compositae suggest that this flora has a maximum age around the Miocene-Pliocene boundary, that is, 6-7 million years. All members of the paleocommunity presently grow in the bosque montano húmedo (cloud forest) along the eastern slope of the Central Andes of Bolivia, which occurs between MATs (mean annual temperatures) of ∼10° and 20°C. The Pislepampa flora probably represents the lower limits of this forest because the fossil leaves collected by Berry from the same locality all have entire margins, suggesting that the flora grew near the cloud forest-tropical forest transition. Presently, the lower limit of the cloud forest forest has MATs of ∼20°C, a mean annual precipitation between 1000 and 1500 mm, and that part containing most of the identified genera of fossil pollen is found at elevations ∼1200-1400 m. These conditions are thus inferred for the Pislepampa flora; however, because of the uncertainty of the magnitude of global climate change and of possible changes in the ecological range of plant genera, we estimate an error of at least ±1000 m for the paleoelevation estimate. When the total uplift is corrected for probable amounts of erosionally driven isostatic rebound, the paleoelevation estimate suggests that from one-third to one-half of the uplift of the Eastern Cordillera had occurred by the beginning of the Pliocene. This estimate is consistent with other paleoelevation estimates from the Central Andes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA