Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770266

RESUMEN

Particle size and morphology analysis is a problem common to a wide range of applications, including additive manufacturing, geological and agricultural materials' characterisation, food manufacturing and pharmaceuticals. Here, we review the use of microfocus X-ray computed tomography (X-ray CT) for particle analysis. We give an overview of different sample preparation methods, image processing protocols, the morphology parameters that can be determined, and types of materials that are suitable for analysis of particle sizes using X-ray CT. The main conclusion is that size and shape parameters can be determined for particles larger than approximately 2 to 3 µm, given adequate resolution of the X-ray CT setup. Particles composed of high atomic number materials (Z > 40) require careful sample preparation to ensure X-ray transmission. Problems occur when particles with a broad range of sizes are closely packed together, or when particles are fused (sintered or cemented). The use of X-ray CT for particle size analysis promises to become increasingly widespread, offering measurements of size, shape, and porosity of large numbers of particles within one X-ray CT scan.

2.
Environ Monit Assess ; 157(1-4): 243-58, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18821024

RESUMEN

A 12-month study was carried to assess the seasonal and tidal effects on the physical parameters of river and groundwater, which constitute the major potable water sources in Calabar (Nigeria). The study also included an evaluation of the chemical composition of the different water bodies and their relationship. The results show that there was a significant seasonal effect on dissolved oxygen (DO) and nitrate in groundwater on one hand, and on temperature, redox potential (Eh), and DO in river water on the other. Also, a significant tidal influence exists on DO in both river-and groundwater. Comparison between groundwater and river water show statistically significant difference in EC, TDS, Eh, DO, Na, Cl and NO(3). The significant differences in EC, TDS, Na and Cl are due to tidal flushing. The difference in Eh is due to geology of the area while, NO(3) is as a result of anthropogenic pollution. The concentrations of ions in the river and groundwater for the different seasons and tidal cycles show an inverse relationship, while the river water is generally more concentrated than the groundwater. Using a binary mixing model, estimates show that the degree of mixing of river water and groundwater is low, with values of between 1.93% and 2.76% respectively, in the western and eastern parts of the study area. The study concludes that tidal flushing, anthropogenic effects and oxygen supply during recharge contribute to the shaping of water chemistry in the area.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Ríos/química , Contaminantes del Agua/análisis , Cloro/análisis , Ciudades , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Nigeria , Nitratos/análisis , Oxidación-Reducción , Oxígeno/análisis , Estaciones del Año , Sodio/análisis , Temperatura
3.
Philos Trans A Math Phys Eng Sci ; 360(1793): 675-93, 2002 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12804299

RESUMEN

This paper reviews the opportunities and pitfalls associated with using clay mineralogical analysis in palaeoclimatic reconstructions. Following this, conjunctive methods of improving the reliability of clay mineralogical analysis are reviewed. The Mesozoic succession of NW Europe is employed as a case study. This demonstrates the relationship between clay mineralogy and palaeoclimate. Proxy analyses may be integrated with clay mineralogical analysis to provide an assessment of aridity-humidity contrasts in the hinterland climate. As an example, the abundance of kaolinite through the Mesozoic shows that, while interpretations may be difficult, the Mesozoic climate of NW Europe was subject to great changes in rates of continental precipitation. We may compare sedimentological (facies, mineralogy, geochemistry) indicators of palaeoprecipitation with palaeotemperature estimates. The integration of clay mineralogical analyses with other sedimentological proxy indicators of palaeoclimate allows differentiation of palaeoclimatic effects from those of sea-level and tectonic change. We may also observe how widespread palaeoclimate changes were; whether they were diachronous or synchronous; how climate, sea level and tectonics interact to control sedimentary facies and what palaeoclimate indicators are reliable.


Asunto(s)
Silicatos de Aluminio/análisis , Clima , Evolución Planetaria , Sedimentos Geológicos/análisis , Minerales/análisis , Arcilla , Europa (Continente) , Sedimentos Geológicos/química , Modelos Teóricos , Paleontología , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA