Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 13(1): 13304, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587216

RESUMEN

Heartland virus was first isolated in 2009 from two patients in Missouri and is transmitted by the Lone Star tick, Amblyomma americanum. To understand disease transmission and pathogenesis, it is necessary to develop an animal model which utilizes the natural route of transmission and manifests in a manner similar to documented human cases. Herein we describe our investigations on identifying A129 mice as the most appropriate small animal model for HRTV pathogenesis that mimics human clinical outcomes. We further investigated the impact of tick saliva in enhancing pathogen transmission and clinical outcomes. Our investigations revealed an increase in viral load in the groups of mice that received both virus and tick salivary gland extract (SGE). Spleens of all infected mice showed extramedullary hematopoiesis (EH), depleted white pulp, and absence of germinal centers. This observation mimics the splenomegaly observed in natural human cases. In the group that received both HRTV and tick SGE, the clinical outcome of HRTV infection was exacerbated compared to HRTV only infection. EH scores and the presence of viral antigens in spleen were higher in mice that received both HRTV and tick SGE. In conclusion, we have developed a small animal model that mimics natural human infection and also demonstrated the impact of tick salivary factors in exacerbating the HRTV infection.


Asunto(s)
Amblyomma , Virosis , Humanos , Animales , Ratones , Bazo , Modelos Animales
2.
Res Sq ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37163121

RESUMEN

Heartland virus was first isolated in 2009 from two patients in Missouri and is transmitted by the lone star tick, Amblyomma americanum. To understand disease transmission and pathogenesis, it is necessary to develop an animal model that utilizes the natural transmission route and manifests in a manner similar to documented human cases. Herein we describe our investigations on identifying A129 mice as the most appropriate small animal model for HRTV pathogenesis that mimics human clinical outcomes. We further investigated the impact of tick saliva in enhancing pathogen transmission and clinical outcomes. Our investigations revealed an increase in viral load in the groups of mice that received both virus and tick salivary gland extract (SGE). Spleens of all infected mice showed extramedullary hematopoiesis (EH), depleted white pulp, and absence of germinal centers. This observation mimics the splenomegaly observed in natural human cases. In the group that received both HRTV and tick SGE, the clinical outcome of HRTV infection was exacerbated compared to HRTV-only infection. EH scores and viral antigens in the spleen were higher in mice that received both HRTV and tick SGE. In conclusion, we have developed a small animal model that mimics natural human infection and also demonstrated the impact to tick salivary factors in exacerbating the HRTV infection.

3.
J Am Med Inform Assoc ; 29(7): 1172-1182, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35435957

RESUMEN

OBJECTIVE: The goals of this study were to harmonize data from electronic health records (EHRs) into common units, and impute units that were missing. MATERIALS AND METHODS: The National COVID Cohort Collaborative (N3C) table of laboratory measurement data-over 3.1 billion patient records and over 19 000 unique measurement concepts in the Observational Medical Outcomes Partnership (OMOP) common-data-model format from 55 data partners. We grouped ontologically similar OMOP concepts together for 52 variables relevant to COVID-19 research, and developed a unit-harmonization pipeline comprised of (1) selecting a canonical unit for each measurement variable, (2) arriving at a formula for conversion, (3) obtaining clinical review of each formula, (4) applying the formula to convert data values in each unit into the target canonical unit, and (5) removing any harmonized value that fell outside of accepted value ranges for the variable. For data with missing units for all the results within a lab test for a data partner, we compared values with pooled values of all data partners, using the Kolmogorov-Smirnov test. RESULTS: Of the concepts without missing values, we harmonized 88.1% of the values, and imputed units for 78.2% of records where units were absent (41% of contributors' records lacked units). DISCUSSION: The harmonization and inference methods developed herein can serve as a resource for initiatives aiming to extract insight from heterogeneous EHR collections. Unique properties of centralized data are harnessed to enable unit inference. CONCLUSION: The pipeline we developed for the pooled N3C data enables use of measurements that would otherwise be unavailable for analysis.


Asunto(s)
COVID-19 , Registros Electrónicos de Salud , Estudios de Cohortes , Recolección de Datos , Humanos
4.
JAMA Netw Open ; 5(2): e2143151, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35133437

RESUMEN

Importance: Understanding of SARS-CoV-2 infection in US children has been limited by the lack of large, multicenter studies with granular data. Objective: To examine the characteristics, changes over time, outcomes, and severity risk factors of children with SARS-CoV-2 within the National COVID Cohort Collaborative (N3C). Design, Setting, and Participants: A prospective cohort study of encounters with end dates before September 24, 2021, was conducted at 56 N3C facilities throughout the US. Participants included children younger than 19 years at initial SARS-CoV-2 testing. Main Outcomes and Measures: Case incidence and severity over time, demographic and comorbidity severity risk factors, vital sign and laboratory trajectories, clinical outcomes, and acute COVID-19 vs multisystem inflammatory syndrome in children (MIS-C), and Delta vs pre-Delta variant differences for children with SARS-CoV-2. Results: A total of 1 068 410 children were tested for SARS-CoV-2 and 167 262 test results (15.6%) were positive (82 882 [49.6%] girls; median age, 11.9 [IQR, 6.0-16.1] years). Among the 10 245 children (6.1%) who were hospitalized, 1423 (13.9%) met the criteria for severe disease: mechanical ventilation (796 [7.8%]), vasopressor-inotropic support (868 [8.5%]), extracorporeal membrane oxygenation (42 [0.4%]), or death (131 [1.3%]). Male sex (odds ratio [OR], 1.37; 95% CI, 1.21-1.56), Black/African American race (OR, 1.25; 95% CI, 1.06-1.47), obesity (OR, 1.19; 95% CI, 1.01-1.41), and several pediatric complex chronic condition (PCCC) subcategories were associated with higher severity disease. Vital signs and many laboratory test values from the day of admission were predictive of peak disease severity. Variables associated with increased odds for MIS-C vs acute COVID-19 included male sex (OR, 1.59; 95% CI, 1.33-1.90), Black/African American race (OR, 1.44; 95% CI, 1.17-1.77), younger than 12 years (OR, 1.81; 95% CI, 1.51-2.18), obesity (OR, 1.76; 95% CI, 1.40-2.22), and not having a pediatric complex chronic condition (OR, 0.72; 95% CI, 0.65-0.80). The children with MIS-C had a more inflammatory laboratory profile and severe clinical phenotype, with higher rates of invasive ventilation (117 of 707 [16.5%] vs 514 of 8241 [6.2%]; P < .001) and need for vasoactive-inotropic support (191 of 707 [27.0%] vs 426 of 8241 [5.2%]; P < .001) compared with those who had acute COVID-19. Comparing children during the Delta vs pre-Delta eras, there was no significant change in hospitalization rate (1738 [6.0%] vs 8507 [6.2%]; P = .18) and lower odds for severe disease (179 [10.3%] vs 1242 [14.6%]) (decreased by a factor of 0.67; 95% CI, 0.57-0.79; P < .001). Conclusions and Relevance: In this cohort study of US children with SARS-CoV-2, there were observed differences in demographic characteristics, preexisting comorbidities, and initial vital sign and laboratory values between severity subgroups. Taken together, these results suggest that early identification of children likely to progress to severe disease could be achieved using readily available data elements from the day of admission. Further work is needed to translate this knowledge into improved outcomes.


Asunto(s)
COVID-19/epidemiología , Adolescente , Distribución por Edad , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/terapia , COVID-19/virología , Niño , Preescolar , Comorbilidad , Progresión de la Enfermedad , Diagnóstico Precoz , Femenino , Humanos , Lactante , Masculino , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Factores Sociodemográficos , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/epidemiología , Síndrome de Respuesta Inflamatoria Sistémica/terapia , Síndrome de Respuesta Inflamatoria Sistémica/virología , Estados Unidos/epidemiología , Signos Vitales
5.
medRxiv ; 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34341796

RESUMEN

IMPORTANCE: SARS-CoV-2. OBJECTIVE: To determine the characteristics, changes over time, outcomes, and severity risk factors of SARS-CoV-2 affected children within the National COVID Cohort Collaborative (N3C). DESIGN: Prospective cohort study of patient encounters with end dates before May 27th, 2021. SETTING: 45 N3C institutions. PARTICIPANTS: Children <19-years-old at initial SARS-CoV-2 testing. MAIN OUTCOMES AND MEASURES: Case incidence and severity over time, demographic and comorbidity severity risk factors, vital sign and laboratory trajectories, clinical outcomes, and acute COVID-19 vs MIS-C contrasts for children infected with SARS-CoV-2. RESULTS: 728,047 children in the N3C were tested for SARS-CoV-2; of these, 91,865 (12.6%) were positive. Among the 5,213 (6%) hospitalized children, 685 (13%) met criteria for severe disease: mechanical ventilation (7%), vasopressor/inotropic support (7%), ECMO (0.6%), or death/discharge to hospice (1.1%). Male gender, African American race, older age, and several pediatric complex chronic condition (PCCC) subcategories were associated with higher clinical severity (p ≤ 0.05). Vital signs (all p≤0.002) and many laboratory tests from the first day of hospitalization were predictive of peak disease severity. Children with severe (vs moderate) disease were more likely to receive antimicrobials (71% vs 32%, p<0.001) and immunomodulatory medications (53% vs 16%, p<0.001). Compared to those with acute COVID-19, children with MIS-C were more likely to be male, Black/African American, 1-to-12-years-old, and less likely to have asthma, diabetes, or a PCCC (p < 0.04). MIS-C cases demonstrated a more inflammatory laboratory profile and more severe clinical phenotype with higher rates of invasive ventilation (12% vs 6%) and need for vasoactive-inotropic support (31% vs 6%) compared to acute COVID-19 cases, respectively (p<0.03). CONCLUSIONS: In the largest U.S. SARS-CoV-2-positive pediatric cohort to date, we observed differences in demographics, pre-existing comorbidities, and initial vital sign and laboratory test values between severity subgroups. Taken together, these results suggest that early identification of children likely to progress to severe disease could be achieved using readily available data elements from the day of admission. Further work is needed to translate this knowledge into improved outcomes.

6.
JAMA Netw Open ; 4(7): e2116901, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34255046

RESUMEN

Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. Design, Setting, and Participants: In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. Results: The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.


Asunto(s)
COVID-19 , Bases de Datos Factuales , Predicción , Hospitalización , Modelos Biológicos , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/etnología , COVID-19/mortalidad , Comorbilidad , Etnicidad , Oxigenación por Membrana Extracorpórea , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Persona de Mediana Edad , Pandemias , Respiración Artificial , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2 , Estados Unidos , Adulto Joven
7.
medRxiv ; 2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33469592

RESUMEN

Background: The majority of U.S. reports of COVID-19 clinical characteristics, disease course, and treatments are from single health systems or focused on one domain. Here we report the creation of the National COVID Cohort Collaborative (N3C), a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative U.S. cohort of COVID-19 cases and controls to date. This multi-center dataset supports robust evidence-based development of predictive and diagnostic tools and informs critical care and policy. Methods and Findings: In a retrospective cohort study of 1,926,526 patients from 34 medical centers nationwide, we stratified patients using a World Health Organization COVID-19 severity scale and demographics; we then evaluated differences between groups over time using multivariable logistic regression. We established vital signs and laboratory values among COVID-19 patients with different severities, providing the foundation for predictive analytics. The cohort included 174,568 adults with severe acute respiratory syndrome associated with SARS-CoV-2 (PCR >99% or antigen <1%) as well as 1,133,848 adult patients that served as lab-negative controls. Among 32,472 hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March/April 2020 to 8.6% in September/October 2020 (p = 0.002 monthly trend). In a multivariable logistic regression model, age, male sex, liver disease, dementia, African-American and Asian race, and obesity were independently associated with higher clinical severity. To demonstrate the utility of the N3C cohort for analytics, we used machine learning (ML) to predict clinical severity and risk factors over time. Using 64 inputs available on the first hospital day, we predicted a severe clinical course (death, discharge to hospice, invasive ventilation, or extracorporeal membrane oxygenation) using random forest and XGBoost models (AUROC 0.86 and 0.87 respectively) that were stable over time. The most powerful predictors in these models are patient age and widely available vital sign and laboratory values. The established expected trajectories for many vital signs and laboratory values among patients with different clinical severities validates observations from smaller studies, and provides comprehensive insight into COVID-19 characterization in U.S. patients. Conclusions: This is the first description of an ongoing longitudinal observational study of patients seen in diverse clinical settings and geographical regions and is the largest COVID-19 cohort in the United States. Such data are the foundation for ML models that can be the basis for generalizable clinical decision support tools. The N3C Data Enclave is unique in providing transparent, reproducible, easily shared, versioned, and fully auditable data and analytic provenance for national-scale patient-level EHR data. The N3C is built for intensive ML analyses by academic, industry, and citizen scientists internationally. Many observational correlations can inform trial designs and care guidelines for this new disease.

8.
Am J Clin Pathol ; 151(2): 205-208, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30265272

RESUMEN

Objectives: Renal biopsy is the gold standard for the diagnosis of both native and allograft renal diseases. We studied the impact of tissue procurement at bedside (TPB) omission on the adequacy of renal biopsies. Methods: We compared 120 renal biopsies collected during 2015 using TPB with 111 renal biopsies collected during 2016 when TPB was discontinued. Adequacy criteria were applied as follows: by light microscopy, 10 glomeruli and two arteries for allograft biopsies and seven glomeruli for native biopsies. At least one glomerulus was considered adequate for immunofluorescence and electron microscopy in both groups. Results: The rate of inadequacies in allograft biopsies increased significantly, from 12.50% to 21.61% (P < .05), when TPB was discontinued. Conclusions: Elimination of TPB service had a negative impact on allograft specimen adequacy. Repeat biopsies add cost and delay patient care. Institutions should take this into consideration when considering omission of TPB.


Asunto(s)
Biopsia con Aguja Gruesa/normas , Enfermedades Renales/diagnóstico , Guías de Práctica Clínica como Asunto , Obtención de Tejidos y Órganos/normas , Aloinjertos/normas , Aloinjertos/cirugía , Técnica del Anticuerpo Fluorescente , Humanos , Riñón/cirugía , Enfermedades Renales/cirugía , Glomérulos Renales/cirugía , Trasplante de Riñón , Microscopía Electrónica , Nefrectomía , Estudios Retrospectivos , Obtención de Tejidos y Órganos/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA