Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 6(3): e1000812, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20333239

RESUMEN

Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.


Asunto(s)
Entamoeba histolytica/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Animales , Vesículas Citoplasmáticas/metabolismo , Entamoeba histolytica/genética , Genoma de Protozoos , Cadenas de Markov , Proteínas Mitocondriales/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Filogenia , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética
2.
J Mol Biol ; 376(3): 694-704, 2008 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-18187149

RESUMEN

Mitochondria cannot be made de novo. Mitochondrial biogenesis requires that up to 1000 proteins are imported into mitochondria, and the protein import pathway relies on hetero-oligomeric translocase complexes in both the inner and outer mitochondrial membranes. The translocase in the outer membrane, the TOM complex, is composed of a core complex formed from the beta-barrel channel Tom40 and additional subunits each with single, alpha-helical transmembrane segments. How alpha-helical transmembrane segments might be assembled onto a transmembrane beta-barrel in the context of a membrane environment is a question of fundamental importance. The master receptor subunit of the TOM complex, Tom20, recognizes the targeting sequence on incoming mitochondrial precursor proteins, binds these protein ligands, and then transfers them to the core complex for translocation across the outer membrane. Here we show that the transmembrane segment of Tom20 contains critical residues essential for docking the Tom20 receptor into its correct environment within the TOM complex. This crucial docking reaction is catalyzed by the unique assembly factor Mim1/Tom13. Mutations in the transmembrane segment that destabilize Tom20, or deletion of Mim1, prevent Tom20 from functioning as a receptor for protein import into mitochondria.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA