Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(1): 166-185, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994698

RESUMEN

Eukaryotic cells are thought to arrange nucleosomes into extended arrays with evenly spaced nucleosomes phased at genomic landmarks. Here we tested to what extent this stereotypic organization describes the nucleosome organization in Saccharomyces cerevisiae using Fiber-Seq, a long-read sequencing technique that maps entire nucleosome arrays on individual chromatin fibers in a high throughput manner. With each fiber coming from a different cell, Fiber-Seq uncovers cell-to-cell heterogeneity. The long reads reveal the nucleosome architecture even over repetitive DNA such as the ribosomal DNA repeats. The absolute nucleosome occupancy, a parameter that is difficult to obtain with conventional sequencing approaches, is a direct readout of Fiber-Seq. We document substantial deviations from the stereotypical nucleosome organization with unexpectedly long linker DNAs between nucleosomes, gene bodies missing entire nucleosomes, cell-to-cell heterogeneity in nucleosome occupancy, heterogeneous phasing of arrays and irregular nucleosome spacing. Nucleosome array structures are indistinguishable throughout the gene body and with respect to the direction of transcription arguing against transcription promoting array formation. Acute nucleosome depletion destroyed most of the array organization indicating that nucleosome remodelers cannot efficiently pack nucleosomes under those conditions. Given that nucleosomes are cis-regulatory elements, the cell-to-cell heterogeneity uncovered by Fiber-Seq provides much needed information to understand chromatin structure and function.


Asunto(s)
Cromatina , Nucleosomas , Cromatina/genética , Nucleosomas/genética , ADN/genética , Genoma , Saccharomyces cerevisiae/genética
2.
Methods Mol Biol ; 2611: 121-152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807068

RESUMEN

Digestion with restriction enzymes is a classical approach for probing DNA accessibility in chromatin. It allows to monitor both the cut and the uncut fraction and thereby the determination of accessibility or occupancy (= 1 - accessibility) in absolute terms as the percentage of cut or uncut molecules, respectively, out of all molecules. The protocol presented here takes this classical approach to the genome-wide level. After exhaustive restriction enzyme digestion of chromatin, DNA is purified, sheared, and converted into libraries for high-throughput sequencing. Bioinformatic analysis counts uncut DNA fragments as well as DNA ends generated by restriction enzyme digest and derives thereof the fraction of accessible DNA. This straightforward principle is technically challenged as preparation and sequencing of the libraries leads to biased scoring of DNA fragments. Our protocol includes two orthogonal approaches to correct for this bias, the "corrected cut-uncut" and the "cut-all cut" method, so that accurate measurements of absolute accessibility or occupancy at restriction sites throughout a genome are possible. The protocol is presented for the example of S. cerevisiae chromatin but may be adapted for any other species.


Asunto(s)
Cromatina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , ADN/genética , Genoma , Enzimas de Restricción del ADN/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Elife ; 102021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33666171

RESUMEN

Chromatin dynamics are mediated by remodeling enzymes and play crucial roles in gene regulation, as established in a paradigmatic model, the Saccharomyces cerevisiae PHO5 promoter. However, effective nucleosome dynamics, that is, trajectories of promoter nucleosome configurations, remain elusive. Here, we infer such dynamics from the integration of published single-molecule data capturing multi-nucleosome configurations for repressed to fully active PHO5 promoter states with other existing histone turnover and new chromatin accessibility data. We devised and systematically investigated a new class of 'regulated on-off-slide' models simulating global and local nucleosome (dis)assembly and sliding. Only seven of 68,145 models agreed well with all data. All seven models involve sliding and the known central role of the N-2 nucleosome, but regulate promoter state transitions by modulating just one assembly rather than disassembly process. This is consistent with but challenges common interpretations of previous observations at the PHO5 promoter and suggests chromatin opening by binding competition.


Asunto(s)
Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Histonas/metabolismo , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA