Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 46(9): 6185-6198, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38530738

RESUMEN

Although modern generative models achieve excellent quality in a variety of tasks, they often lack the essential ability to generate examples with requested properties, such as the age of the person in the photo or the weight of the generated molecule. To overcome these limitations we propose PluGeN (Plugin Generative Network), a simple yet effective generative technique that can be used as a plugin for pre-trained generative models. The idea behind our approach is to transform the entangled latent representation using a flow-based module into a multi-dimensional space where the values of each attribute are modeled as an independent one-dimensional distribution. In consequence, PluGeN can generate new samples with desired attributes as well as manipulate labeled attributes of existing examples. Due to the disentangling of the latent representation, we are even able to generate samples with rare or unseen combinations of attributes in the dataset, such as a young person with gray hair, men with make-up, or women with beards. In contrast to competitive approaches, PluGeN can be trained on partially labeled data. We combined PluGeN with GAN and VAE models and applied it to conditional generation and manipulation of images, chemical molecule modeling and 3D point clouds generation.

2.
Neural Netw ; 168: 580-601, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837747

RESUMEN

The problem of reducing processing time of large deep learning models is a fundamental challenge in many real-world applications. Early exit methods strive towards this goal by attaching additional Internal Classifiers (ICs) to intermediate layers of a neural network. ICs can quickly return predictions for easy examples and, as a result, reduce the average inference time of the whole model. However, if a particular IC does not decide to return an answer early, its predictions are discarded, with its computations effectively being wasted. To solve this issue, we introduce Zero Time Waste (ZTW), a novel approach in which each IC reuses predictions returned by its predecessors by (1) adding direct connections between ICs and (2) combining previous outputs in an ensemble-like manner. We conduct extensive experiments across various multiple modes, datasets, and architectures to demonstrate that ZTW achieves a significantly better accuracy vs. inference time trade-off than other early exit methods. On the ImageNet dataset, it obtains superior results over the best baseline method in 11 out of 16 cases, reaching up to 5 percentage points of improvement on low computational budgets.


Asunto(s)
Motivación , Redes Neurales de la Computación , Bases de Datos Factuales
3.
IEEE Trans Neural Netw Learn Syst ; 32(9): 3930-3941, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32845846

RESUMEN

We propose a semi-supervised generative model, SeGMA, which learns a joint probability distribution of data and their classes and is implemented in a typical Wasserstein autoencoder framework. We choose a mixture of Gaussians as a target distribution in latent space, which provides a natural splitting of data into clusters. To connect Gaussian components with correct classes, we use a small amount of labeled data and a Gaussian classifier induced by the target distribution. SeGMA is optimized efficiently due to the use of the Cramer-Wold distance as a maximum mean discrepancy penalty, which yields a closed-form expression for a mixture of spherical Gaussian components and, thus, obviates the need of sampling. While SeGMA preserves all properties of its semi-supervised predecessors and achieves at least as good generative performance on standard benchmark data sets, it presents additional features: 1) interpolation between any pair of points in the latent space produces realistically looking samples; 2) combining the interpolation property with disentangling of class and style information, SeGMA is able to perform continuous style transfer from one class to another; and 3) it is possible to change the intensity of class characteristics in a data point by moving the latent representation of the data point away from specific Gaussian components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA