Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Zool ; 70(4): 465-471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39176062

RESUMEN

Most behavioral traits are known to be weakly heritable, possibly due to their extreme complexity and flexibility. Despite this general pattern, within-species variation in avian colony size choice has been reported to have a strong additive genetic component, but we are aware of no attempts to assess the heritability of avian sociality at the finer spatial scale. Here, we used an animal model and parent-offspring regression to quantify additive genetic variance in social phenotype (local nesting density) in a nonpasserine waterbird, the common tern Sterna hirundo. For this purpose, we used a novel experimental framework, where variation in the social environment was generated by providing birds with artificial patches of attractive nesting substrate that markedly varied in size. During 2011-2019, we collected data on social preferences for either low or high nesting density in over 250 individuals, either kin (mostly parent-offspring relationships) or non-kin recorded breeding multiple times across years. All heritability estimates of local nesting density were low (<0.10), irrespectively of fixed effects (sex and year) included in the models, data used in the modeling (all individuals vs. early recruits), or methodological approach (animal model vs. parent-offspring regression). We conclude that avian sociality, as measured at the local scale, may be much less heritable than colony size choice, as measured at the landscape level. Our study adds to the understanding of additive genetic variance in avian behavior, and it underlines a scale dependency in the heritability of behavioral traits.

2.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38515294

RESUMEN

Long-distance host movements play a major regulatory role in shaping microbial communities of their digestive tract. Here, we studied gut microbiota composition during seasonal migration in five shorebird species (Charadrii) that use different migratory (stopover) habitats. Our analyses revealed significant interspecific variation in both composition and diversity of gut microbiome, but the effect of host identity was weak. A strong variation in gut microbiota was observed between coastal and inland (dam reservoir and river valley) stopover habitats within species. Comparisons between host age classes provided support for an increasing alpha diversity of gut microbiota during ontogeny and an age-related remodeling of microbiome composition. There was, however, no correlation between microbiome and diet composition across study species. Finally, we detected high prevalence of avian pathogens, which may cause zoonotic diseases in humans (e.g. Vibrio cholerae) and we identified stopover habitat as one of the major axes of variation in the bacterial pathogen exposure risk in shorebirds. Our study not only sheds new light on ecological processes that shape avian gut microbiota, but also has implications for our better understanding of host-pathogen interface and the role of birds in long-distance transmission of pathogens.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Humanos , Aves/microbiología , Bacterias/genética , ARN Ribosómico 16S/genética
3.
Ecol Evol ; 13(10): e10572, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37791294

RESUMEN

Extensive transformation of natural land cover into urbanized areas enhances accumulation of phenotypic differences between animals from urban and nonurban populations, but there is little information on whether these changes, especially in terms of animal behaviour and circadian rhythm, have a genetic basis. The aim of this study was to investigate genetic background of behavioural differences between four pairs of urban and nonurban populations of a common waterbird, the Eurasian coot Fulica atra. For this purpose, we quantified polymorphisms in personality-related candidate genes, previously reported to be associated with avian circadian rhythms and behavioural traits that may be crucial for urban life. We found general associations between landscape urbanization level and polymorphisms in 3'UTR region of CREB1 gene encoding transcriptional factor, which participates in development of cognitive functions and regulation of circadian rhythm. We also found significant differentiation between urban and nonurban populations in the intronic region of CKIɛ gene responsible for regulation of circadian clock. Although we lacked evidence for linkage of this intronic variation with coding polymorphisms, genetic differentiation between urban populations was significantly stronger at CKIɛ intron compared with neutral microsatellite markers, suggesting possible local adaptations of CKIɛ expression regulation to specific urban sites. Our results indicate that behavioural differentiation between urban and nonurban coot populations may be the effect of habitat-specific selective pressure resulting in genetic adaptations to urban environment and supporting the microevolutionary scenario. These adaptations, however, prevailed in non-coding regulatory rather than coding gene regions and showed either general or local patterns, revealing high complexity of associations between behaviour and landscape urbanization in birds.

4.
Dev Comp Immunol ; 144: 104704, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37019350

RESUMEN

Toll-like receptors (TLRs) form a key component of animal innate immunity, being responsible for recognition of conserved microbial structures. As such, TLRs may be subject to diversifying and balancing selection, which maintains allelic variation both within and between populations. However, most research on TLRs in non-model avian species is focused on bottlenecked populations with depleted genetic variation. Here, we assessed variation at the extracellular domains of three TLR genes (TLR1LA, TLR3, TLR4) across eleven species from two passerine families of buntings (Emberizidae) and finches (Fringillidae), all having large breeding population sizes (millions of individuals). We found extraordinary TLR polymorphism in our study taxa, with >100 alleles detected at TLR1LA and TLR4 across species and high haplotype diversity (>0.75) in several species. Despite recent species divergence, no nucleotide allelic variants were shared between species, suggesting rapid TLR evolution. Higher variation at TLR1LA and TLR4 than TLR3 was associated with a stronger signal of diversifying selection, as measured with nucleotide substitutions rates and the number of positively selected sites (PSS). Structural protein modelling of TLRs showed that some PSS detected within TLR1LA and TLR4 were previously recognized as functionally important sites or were located in their proximity, possibly affecting ligand recognition. Furthermore, we identified PSS responsible for major surface electrostatic charge clustering, which may indicate their adaptive importance. Our study provides compelling evidence for the divergent evolution of TLR genes in buntings and finches and indicates that high TLR variation may be adaptively maintained via diversifying selection acting on functional ligand binding sites.


Asunto(s)
Pinzones , Passeriformes , Animales , Receptor Toll-Like 4/genética , Pinzones/genética , Ligandos , Receptor Toll-Like 3/genética , Receptores Toll-Like/genética , Receptores Toll-Like/química , Passeriformes/genética , Evolución Molecular
5.
Parasitology ; 149(11): 1479-1486, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35768413

RESUMEN

Haemoparasites represent a diverse group of vector-borne parasites that infect a wide range of vertebrate hosts. In birds, haemoparasite infection rates may be associated with various ecological and life history traits, including habitat choice, colony size and migration distance. Here, we molecularly assessed the prevalence of 3 main haemoparasite genera (Plasmodium, Haemoproteus and Leucocytozoon) in 2 bird species with different habitat preferences and migratory behaviour: black-headed gulls (Chroicocephalus ridibundus) and common terns (Sterna hirundo). We found that gulls showed a much higher prevalence and diversity of Plasmodium or Haemoproteus (ca. 60% of individuals infected) than terns (zero prevalence). The prevalence of Leucocytozoon was low in both species (<3%). The differences in haemoparasite prevalences may be primarily driven by varying vector encounter rate resulting from different habitat preferences, as black-headed gulls mainly use vector-rich vegetated freshwater habitats, whereas common terns often use vector-poor coastal and brackish habitats. Since common terns migrate further than black-headed gulls, our results did not provide support for an association between haemoparasite prevalence and migratory distance. In gulls, we found a negative association between colony size and infection rates, suggestive of an ideal despotic distribution, and phylogenetic analyses of detected haemoparasite lineages provided evidence for higher host specificity in Haemoproteus than Plasmodium. Our results suggest that the preference for coastal areas and less vegetated habitats in terns may reduce haemoparasite infection rates compared to other larids, regardless of their migratory distance, emphasizing the role of ecological niches in parasite exposure.


Asunto(s)
Enfermedades de las Aves , Haemosporida , Parásitos , Plasmodium , Animales , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/parasitología , Aves/parasitología , Ecosistema , Haemosporida/genética , Humanos , Parásitos/genética , Filogenia , Plasmodium/genética , Prevalencia
6.
PeerJ ; 9: e12264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707940

RESUMEN

Urban sprawl is one of the most common landscape alterations occurring worldwide, and there is a growing list of species that are recognised to have adapted to urban life. To be successful, processes of urban colonization by wildlife require a broad spectrum of phenotypic (e.g., behavioural or physiological) adjustments, but evidence for genetic adaptations is much scarcer. One hypothesis proposes that different pathogen-driven selective pressures between urban and non-urban landscapes leads to adaptations in host immune genes. Here, we examined urbanization-related differentiation at the key pathogen-recognition genes of vertebrate adaptive immunity-the major histocompatibility complex (MHC)-in a common waterbird, the Eurasian coot (Fulica atra). Samples were collected from an old urban population (established before the 1950s), a new urban population (established in the 2000s), and two rural populations from central Poland. We found strong significant divergence (as measured with Jost's D) at the MHC class II between the old urban population and the remaining (new urban and rural) populations. Also, there was a moderate, but significant divergence at the MHC between the new urban population and two rural populations, while no divergence was found between the two rural populations. The total number of MHC alleles and the number of private (population-specific) MHC alleles was lower in old urban populations, as compared to the rural ones. These patterns of differentiation at the MHC were not consistent with patterns found for neutral genetic markers (microsatellites), which showed few differences between the populations. Our results indicate that MHC allele composition depended on the level of anthropogenic disturbance and the time which passed since urban colonization, possibly due to the processes of genotype sorting and local adaptation. As such, our study contributes to the understanding of genetic mechanisms associated with urbanization processes in wildlife.

7.
Infect Genet Evol ; 95: 105069, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34487864

RESUMEN

Toll-like receptors (TLRs) and the Major Histocompatibility Complex (MHC) are the key pathogen-recognition genes of vertebrate immune system and they have a crucial role in the initiation of innate and adaptive immune response, respectively. Recent advancements in sequencing technology sparked research on highly duplicated MHC genes in non-model species, but TLR variation in natural vertebrate populations has remained little studied and comparisons of polymorphism across both TLRs and MHC are scarce. Here, we aimed to compare variation across innate (four TLR loci) and adaptive (MHC class I and class II) immune genes in a non-model avian species, the common tern Sterna hirundo. We detected relatively high allelic richness at TLR genes (9-48 alleles per locus), which was similar to or even higher than the estimated per locus allelic richness at the MHC (24-30 alleles at class I and 13-16 alleles at class II under uniform sample sizes). Despite this, the total number of MHC alleles across all duplicated loci (four class I and three class II) was much higher and MHC alleles showed greater sequence divergence than TLRs. Positive selection targeted relatively more sites at the MHC than TLRs, but the strength of selection (dN/dS ratios) at TLRs was higher when compared to MHC class I. There were also differences in the signature of positive selection and recombination (gene conversion) between MHC class I and II (stronger signature at class II), suggesting that mechanisms maintaining variation at the MHC may vary between both classes. Our study indicates that allelic richness of both innate and adaptive immune receptors may be maintained at relatively high levels in viable avian populations and we recommend a transition from the traditional gene-specific to multi-gene approach in studying molecular evolution of vertebrate immune system.


Asunto(s)
Inmunidad Adaptativa/genética , Proteínas Aviares/genética , Charadriiformes/genética , Evolución Molecular , Genes MHC Clase I/genética , Inmunidad Innata/genética , Receptores Toll-Like/genética , Animales , Proteínas Aviares/inmunología , Charadriiformes/inmunología , Genes MHC Clase I/inmunología , Receptores Toll-Like/inmunología
8.
J Anim Ecol ; 90(10): 2325-2335, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34028816

RESUMEN

Optimal size of social groups may vary between individuals, depending on their phenotypic traits, such as dominance status, age or personality. Larger social groups often enhance transmission rates of pathogens and should be avoided by individuals with poor immune defences. In contrast, more immunocompetent individuals are expected to take advantage of larger group sizes (e.g. better protection, information transfer) with smaller extra costs from pathogen or parasite pressure. Here, we hypothesized that immunocompetence may be a key determinant of group size choice and tested this hypothesis in a colonial waterbird, the common tern Sterna hirundo. We used a unique experimental framework, where formation of breeding colonies of different sizes was induced under uniform environmental conditions. For this purpose, different-size patches of attractive nesting substrate (artificial floating rafts) were provided at a single site with limited availability of natural nesting habitat. Colony size was identified as the only significant predictor of both innate (natural antibody-mediated complement activation) and adaptive (immunoglobulin concentrations) immunological traits in the common terns, as more immunocompetent birds settled in larger experimental colonies. In contrast, we found no significant associations between colony size and genetic diversity of key pathogen-recognition receptors, toll-like receptors (TLRs) and the Major Histocompatibility Complex (MHC) or genome-wide heterozygosity. We conclude that settlement decisions may be flexible within individuals and, thus, are likely to be primarily determined by the current immunological status, rather than fixed immunogenetic traits. Our study sheds new light on the complex interface between immunity and sociality in animals.


Asunto(s)
Aves , Charadriiformes , Animales , Ecosistema , Conducta Social
9.
Heredity (Edinb) ; 126(6): 974-990, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824536

RESUMEN

Major histocompatibility complex (MHC) genes code for key proteins of the adaptive immune system, which present antigens from intra-cellular (MHC class I) and extra-cellular (MHC class II) pathogens. Because of their unprecedented diversity, MHC genes have long been an object of scientific interest, but due to methodological difficulties in genotyping of duplicated loci, our knowledge on the evolution of the MHC across different vertebrate lineages is still limited. Here, we compared the evolution of MHC class I and class II genes in three sister clades of common passerine birds, finches (Fringillinae and Carduelinae) and buntings (Emberizidae) using a uniform methodological (genotyping and data processing) approach and uniform sample sizes. Our analyses revealed contrasting evolutionary trajectories of the two MHC classes. We found a stronger signature of pervasive positive selection and higher allele diversity (allele numbers) at the MHC class I than class II. In contrast, MHC class II genes showed greater allele divergence (in terms of nucleotide diversity) and a much stronger recombination (gene conversion) signal. Gene copy numbers at both MHC class I and class II evolved via fluctuating selection and drift (Brownian Motion evolution), but the evolutionary rate was higher at class I. Our study constitutes one of few existing examples, where evolution of MHC class I and class II genes was directly compared using a multi-species approach. We recommend that re-focusing MHC research from single-species and single-class approaches towards multi-species analyses of both MHC classes can substantially increase our understanding MHC evolution in a broad phylogenetic context.


Asunto(s)
Pinzones , Passeriformes , Animales , Pinzones/genética , Genes MHC Clase II , Antígenos de Histocompatibilidad Clase II/genética , Filogenia
10.
Sci Rep ; 11(1): 836, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436983

RESUMEN

Rapid urbanization has a great impact on avian distribution, ecology, habitat selection, and behavior. Recent avian studies indicated that individuals remain consistent in their behavioral responses to human disturbance across short periods of time. However, there is still little information about keeping consistent behaviors in distinct locations across different stages of the annual cycle. In this study, we aimed to test for long-term consistency in habitat selection with respect to urbanization in a migratory waterbird species, the Eurasian coot Fulica atra. For this purpose, we individually marked ca. 300 coots from four populations that varied in urbanization level and tracked their habitat preferences during the non-breeding season. We found that individuals from urban breeding populations selected habitats with a higher share of artificial areas during the non-breeding season, when compared to non-urban individuals. Also, a comparison of non-breeding sites selected by birds from our study populations with random sites showed that urban birds selected sites with higher urbanization level than resulting from random availability. Finally, we found a seasonal variation in habitat preferences in coots-individuals from all study populations selected more urbanized areas as the non-breeding season progressed. The results indicate that birds are able to remain consistent in habitat preferences not only at a large geographical scale, but also across different seasons. Marked between-population variation in habitat selection across the annual cycle may reflect personality differences of coots from urban and non-urban populations, and it stays in line with the personality-matching habitat choice hypothesis.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Comportamiento de Nidificación/fisiología , Animales , Conducta de Elección , Clima , Ecosistema , Geografía , Urbanización
11.
PLoS One ; 15(11): e0241602, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33137151

RESUMEN

The choice of colony size may have profound consequences for individual fitness in colonially breeding birds, but at the same time it may require certain behavioural adaptations. Here, we aimed to examine behavioural divergence of common terns Sterna hirundo nesting in colonies of different size. For this purpose, we promoted establishment of small (<35 pairs) and large (>100 pairs) tern colonies under uniform ecological and environmental conditions by providing attractive patches of nesting substrate (floating rafts) at a single site. We combined video recording and GPS-tracking to assess communal and individual defence initiation rate, intra-specific aggression rate, and foraging flight characteristics. We found that birds from larger colonies more frequently engaged in communal defence and they performed longer foraging flights, while terns from smaller colonies more frequently showed individual defence behaviours. Also, intra-specific aggression rate was higher in smaller colonies, but this effect was primarily attributed to a higher proportion of edge breeding pairs, which were more aggressive. Our results suggest that various colony sizes may be associated with different behavioural syndromes, which comprise of diverse personality traits, such as social responsiveness, social tolerance, or propensity for aggression. It remains to be tested whether these behavioural differences reflect processes of phenotypic sorting among colonies of different size or whether they are a result of behavioural plasticity under different social contexts.


Asunto(s)
Biomasa , Charadriiformes/fisiología , Conducta Sexual Animal , Conducta Social , Animales , Conducta Alimentaria , Femenino , Vuelo Animal , Masculino , Reproducción
12.
PeerJ ; 8: e9002, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391202

RESUMEN

Great Egret Ardea alba is one of few Western Palearctic species that underwent a rapid range expansion in the recent decades. Originally breeding in central and eastern Europe, the species has spread in northern (up to the Baltic coast) and western (up to the western France) directions and established viable breeding populations throughout almost entire continent. We monitored one of the first Great Egrets colonies established in Poland to infer migratory patterns and survival rates directly after range expansion. For this purpose, we collected resightings from over 200 Great Egret chicks marked between 2002-2017 in central Poland. Direction of migration was non-random, as birds moved almost exclusively into the western direction. Wintering grounds were located mainly in the western Europe (Germany to France) within 800-950 km from the breeding colony. First-year birds migrated farther than adults. We found some, although relatively weak, support for age-dependent survival of Great Egrets and under the best-fitted capture-recapture model, the estimated annual survival rate of adults was nearly twice higher than for first-year birds (φ ad  = 0.85 ± 0.05 vs. φ fy  = 0.48 ± 0.15). Annual survival rate under the constant model (no age-related variation) was estimated at φ = 0.81 ± 0.05. Our results suggest that Great Egrets rapidly adapted to novel ecological and environmental conditions during range expansion. We suggest that high survival rate of birds from central Poland and their western direction of migration may facilitate further colonization processes in western Europe.

13.
J Wildl Dis ; 56(2): 414-418, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31596675

RESUMEN

Louse flies are blood-sucking ectoparasites of birds and mammals of veterinary and medical importance. These flies damage host skin and serve as vectors for blood-associated pathogens. Little is known about their phenology, host selection, and prevalence in wild birds. Our study provided a broad-scale assessment of louse flies parasitizing Charadrii and Scolopaci shorebirds during their migration through Central Europe. We collected louse flies from 3,129 specimens in 22 species of shorebirds at a major migratory stopover site in central Poland in 2011-17. In total, 31 Ornithomya avicularia and 15 Ornithomya chloropus specimens occurred on five wader species: Common Snipe (Gallinago gallinago), Ruff (Calidris pugnax), Dunlin (Calidris alpina), Curlew Sandpiper (Calidris ferruginea), and Wood Sandpiper (Tringa glareola). Prevalences ranged from 0.23% to 4.62%. No individual birds were infested by both species of fly, and no flies were found on an additional 17 wader species. The rarer of the two flies, O. chloropus, occurred on all infested bird species, whereas O. avicularia occurred only on Common Snipe and Curlew Sandpiper. In comparison with the other four infested wader species, Common Snipe (n=1,194) was more frequently infested with O. avicularia than with O. chloropus. Our study shows that the prevalence of louse flies on shorebirds is much lower than on other avian taxa. Ecologic and evolutionary mechanisms leading to the relative rarity of louse flies on shorebirds remain to be understood.


Asunto(s)
Migración Animal , Charadriiformes/parasitología , Dípteros/clasificación , Dípteros/fisiología , Infestaciones Ectoparasitarias/veterinaria , Animales , Infestaciones Ectoparasitarias/epidemiología , Infestaciones Ectoparasitarias/parasitología , Interacciones Huésped-Parásitos , Polonia
14.
Environ Sci Pollut Res Int ; 27(7): 7570-7577, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31885068

RESUMEN

Domestic and wild mammals, domestic birds and particularly wild birds are considered to be reservoirs of many species of Enterobacteriaceae, and also important human enteric pathogens, e.g., the bacteria of the genus Campylobacter that occur in their digestive tracts. These species may be vectors of antimicrobial resistance dissemination in the environment, because they may have contact with an environment contaminated with antibiotics. Bird feeders have been suggested as potential dispersal centres between wild wintering birds whose feeding is supported by humans. Therefore, we checked for the presence of Campylobacter bacteria among great tits Parus major, the most common bird species on bird feeders in Poland. Samples (n = 787 cloacal swabs) were collected in urban and rural areas of Poland. Bacterial species were identified using multiplex PCR, and 23 (2.9%) positive tests for Campylobacter spp. were found; in ten samples, C. jejuni was detected. The odds ratio of Campylobacter infection in rural birds was over 2.5 times higher than urban birds. Ten samples with C. jejuni were tested for antibiotic resistance, and all were sensitive to azithromycin, erythromycin and gentamycin, while six isolates were resistant to tetracycline, and five were resistant to ciprofloxacin. Four Campylobacter isolates were resistant to both these antibiotics.


Asunto(s)
Infecciones por Campylobacter/veterinaria , Farmacorresistencia Bacteriana , Pájaros Cantores/microbiología , Animales , Antibacterianos/farmacología , Campylobacter/efectos de los fármacos , Campylobacter/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Polonia
15.
Oecologia ; 190(2): 333-341, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31004188

RESUMEN

Elevated transmission rate of pathogens and parasites is considered one of the major costs of sociality in birds. However, greater risk of infection in colonial birds might be compensated by specific immune adaptations. Here, we predicted that nestlings raised in larger colonies should invest more in their immune function. To test this hypothesis, we manipulated colony size and conduced cross-fostering experiment in a colonial waterbird, the common tern Sterna hirundo. Establishment of different size colonies under uniform environmental conditions was induced by providing large and small patches of attractive nesting area for terns (floating rafts). Then, pairs of clutches were swapped between large and small tern colonies, and skin-swelling response to phytohaemagglutinin (PHA) was assessed for nestlings from experimental and control broods. Contrary to our expectations, we found a negative effect of foster colony size on nestling PHA response (nestlings raised in the larger colony had lower PHA response). In addition, nestling PHA response correlated negatively with heterophil/lymphocyte ratio used as a measure of physiological stress. This suggested that low PHA response of nestlings raised in the larger colony could be mediated by an elevated level of social stress. We suggest that depression of immune function via social stress may constitute a strong selective pressure against large colony size in the common tern, and possibly in other colonial species. We also recommend that this largely overlooked cost of sociality should be considered in the further studies on the evolution and ecology of avian coloniality.


Asunto(s)
Charadriiformes , Animales , Aves , Ecología
16.
J Am Chem Soc ; 140(19): 6164-6168, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29688718

RESUMEN

We present a new polymorph of the two-dimensional (2D) silica film with a characteristic 'zigzag' line structure and a rectangular unit cell which forms on a Ru(0001) metal substrate. This new silica polymorph may allow for important insights into growth modes and transformations of 2D silica films as a model system for the study of glass transitions. Based on scanning tunneling microscopy, low energy electron diffraction, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy measurements on the one hand, and density functional theory calculations on the other, a structural model for the 'zigzag' polymorph is proposed. In comparison to established monolayer and bilayer silica, this 'zigzag' structure system has intermediate characteristics in terms of coupling to the substrate and stoichiometry. The silica 'zigzag' phase is transformed upon reoxidation at higher annealing temperature into a SiO2 silica bilayer film which is chemically decoupled from the substrate.

17.
J Chem Phys ; 148(4): 044310, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29390801

RESUMEN

Vibrationally resolved lowest-energy bands of the photoelectron spectra (PES) of adamantane, diamantane, and urotropine were simulated by a time-dependent correlation function approach within the harmonic approximation. Geometries and normal modes for neutral and cationic molecules were obtained from B3LYP hybrid density functional theory (DFT). It is shown that the simulated spectra reproduce the experimentally observed vibrational finestructure (or its absence) quite well. Origins of the finestructure are discussed and related to recurrences of autocorrelation functions and dominant vibrations. Remaining quantitative and qualitative errors of the DFT-derived PES spectra refer to (i) an overall redshift by ∼0.5 eV and (ii) the absence of satellites in the high-energy region of the spectra. The former error is shown to be due to the neglect of many-body corrections to ordinary Kohn-Sham methods, while the latter has been argued to be due to electron-nuclear couplings beyond the Born-Oppenheimer approximation [Gali et al., Nat. Commun. 7, 11327 (2016)].

18.
PeerJ ; 5: e3057, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286713

RESUMEN

Moult of feathers entails considerable physiological and energetic costs to an avian organism. Even under favourable feeding conditions, endogenous body stores and energy reserves of moulting birds are usually severely depleted. Thus, most species of birds separate moult from other energy-demanding activities, such as migration or reproduction. Common snipe Gallinago gallinago is an exception, as during the first autumn migration many young snipe initiate the post-juvenile moult, which includes replacement of body feathers, lesser and median wing coverts, tertials, and rectrices. Here, we evaluated moult-related changes in blood plasma biochemistry of the common snipe during a period of serious trade-off in energy allocation between moult and migration. For this purpose, concentrations of basic metabolites in plasma were evaluated in more than 500 young snipe migrating through Central Europe. We found significant changes in the plasma concentrations of total protein, triglyceride and glucose over the course of moult, while the concentrations of uric acid and albumin did not change. Total protein concentration increased significantly in the initial stage of moult, probably as a result of increased production of keratin, but it decreased to the pre-moult level at the advanced stage of moult. Plasma triglyceride concentration decreased during the period of tertial and rectrice moult, which reflected depletion of endogenous fat reserves. By contrast, glucose concentration increased steadily during the course of moult, which could be caused by increased catabolism of triglycerides (via gluconeogenesis) or, alternatively, due to increased glucocorticoids as a stress response. Our results suggest that physiological changes associated with moult may be considered important determinants of the low pace of migration typical of the common snipe.

19.
J Wildl Dis ; 53(2): 330-338, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28094608

RESUMEN

We tested wild birds in Poland during 2008-15 for avian influenza virus (AIV). We took 10,312 swabs and feces samples from 6,314 live birds representing 12 orders and 84 bird species, mostly from orders Anseriformes and Charadriiformes, for testing and characterization by various PCR methods. From PCR-positive samples, we attempted to isolate and subtype the virus. The RNA of AIV was detected in 1.8% (95% confidence interval [CI], 1.5-2.1%) of birds represented by 48 Mallards ( Anas platyrhynchos ), 11 Mute Swans ( Cygnus olor ), 48 Common Teals ( Anas crecca ), three Black-headed Gulls (Chroicocephalus ridibundus), one Common Coot ( Fulica atra ), one Garganey (Spatula querquedula), and one unidentified bird species. Overall, the prevalence of AIV detection in Mallards and Mute Swans (the most frequently sampled species) was 2.0% (95% CI, 1.4-2.5%) and 0.5% (95% CI, 0.2-0.8%), respectively; the difference was statistically significant (P=0.000). Hemagglutinin subtypes from H1 to H13 were identified, including H5 and H7 low pathogenic AIV subtypes. Mallards and Common Teals harbored the greatest diversity of subtypes. We observed seasonality of viral detection in Mallards, with higher AIV prevalence in late summer and autumn than in winter and spring. In addition, two peaks in AIV prevalence in summer (August) and autumn (November) were demonstrated for Mallards. The prevalence of AIV in Mute Swans did not show any statistically significant seasonal patterns.


Asunto(s)
Aves/virología , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar , Animales , Animales Salvajes , Polonia
20.
Front Zool ; 13: 47, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27766111

RESUMEN

BACKGROUND: Moult is one of the most costly activities in the annual cycle of birds and most avian species separate moult from other energy-demanding activities, such as migration. To this end, young birds tend to undergo the first post-juvenile moult before the onset of migration, but in some species the time window for the pre-migratory feather replacement is too narrow. We hypothesized that in such species an increased investment in the structural quality of juvenile feathers may allow to retain juvenile plumage throughout the entire migratory period and delay moult until arriving at wintering grounds, thus avoiding a moult-migration overlap. METHODS: The effect of juvenile plumage quality on the occurrence of moult-migration overlap was studied in a migratory shorebird, the common snipe Gallinago gallinago. Ca. 400 of first-year common snipe were captured during their final stage of autumn migration through Central Europe. The quality of juvenile feathers was assessed as the mass-length residuals of retained juvenile rectrices. Condition of migrating birds was assessed with the mass of accumulated fat reserves and whole-blood hemoglobin concentration. Path analysis was used to disentangle complex interrelationships between plumage quality, moult and body condition. RESULTS: Snipe which grew higher-quality feathers in the pre-fledging period were less likely to initiate moult during migration. Individuals moulting during migration had lower fat loads and hemoglobin concentrations compared to non-moulting birds, suggesting a trade-off in resource allocation, where energetic costs of moult reduced both energy reserves available for migration and resources available for maintenance of high oxygen capacity of blood. CONCLUSIONS: The results of this study indicate that a major life-history trade-off in a migratory bird may be mediated by the quality of juvenile plumage. This is consistent with a silver spoon effect, where early-life investment in feather quality affects future performance of birds during migration period. Our results strongly suggest that the juvenile plumage, although retained for a relatively short period of time, may have profound consequences for individuals' fitness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA