Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17444, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075127

RESUMEN

The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual's cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening.


Asunto(s)
Escolaridad , Racismo , Humanos , Masculino , Femenino , Anciano , Pruebas Neuropsicológicas , Cognición/fisiología , Disfunción Cognitiva/diagnóstico , Anciano de 80 o más Años , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Aprendizaje Profundo
2.
Res Sq ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37886534

RESUMEN

The clock drawing test (CDT) is a neuropsychological assessment tool to evaluate a patient's cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing tests (FaIRClocks) to evaluate and mitigate bias against people with lower education while predicting their cognitive status. We represented clock drawings with a 10-dimensional latent embedding using Relevance Factor Variational Autoencoder (RF-VAE) network pretrained on publicly available clock drawings from the National Health and Aging Trends Study (NHATS) dataset. These embeddings were later fine-tuned for predicting three cognitive scores: the Mini-Mental State Examination (MMSE) total score, attention composite z-score (ATT-C), and memory composite z-score (MEM-C). The classifiers were initially tested to see their relative performance in patients with low education (<= 8 years) versus patients with higher education (> 8 years). Results indicated that the initial unweighted classifiers confounded lower education with cognitive impairment, resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve balanced performance. In summary, we report the FaIRClocks model, which a) can identify attention and memory deficits using clock drawings and b) exhibits identical performance between people with higher and lower education levels.

3.
Sci Rep ; 13(1): 7384, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149670

RESUMEN

The clock drawing test is a simple and inexpensive method to screen for cognitive frailties, including dementia. In this study, we used the relevance factor variational autoencoder (RF-VAE), a deep generative neural network, to represent digitized clock drawings from multiple institutions using an optimal number of disentangled latent factors. The model identified unique constructional features of clock drawings in a completely unsupervised manner. These factors were examined by domain experts to be novel and not extensively examined in prior research. The features were informative, as they distinguished dementia from non-dementia patients with an area under receiver operating characteristic (AUC) of 0.86 singly, and 0.96 when combined with participants' demographics. The correlation network of the features depicted the "typical dementia clock" as having a small size, a non-circular or "avocado-like" shape, and incorrectly placed hands. In summary, we report a RF-VAE network whose latent space encoded novel constructional features of clocks that classify dementia from non-dementia patients with high performance.


Asunto(s)
Aprendizaje Profundo , Persea , Humanos , Redes Neurales de la Computación , Aprendizaje Automático Supervisado , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA