Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Robot AI ; 11: 1324519, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050487

RESUMEN

As robot numbers in the home increase, creating a market for second-hand robotic systems is essential to reduce the waste impact of the industry. Via a survey, consumer attitudes of United Kingdom participants towards second-hand robots were investigated; finding that second-hand robots with guarantees have an equal purchasing interest compared to new systems, highlighting the opportunity for manufacturers and retailers to develop certification standards for second-hand robots to move towards a circular economy. Consumer demographics also demonstrated that those most open to the purchase of both new and second-hand systems were women, those aged 18-25 years old, and those who have previously owned a robot for the home. Participants' prior ownership of second-hand electronic devices (such as phones and laptops) did not affect rates of interest for second-hand robotic systems suggesting that the technology is still too new for people to be able to project their experience of current second-hand electronics to that of a robot. Additionally, this research found the robotics industry can consider the potential market for second-hand robots to be more similar to the second-hand smartphone market than to the household electronics market, and lessons learnt from the concerns raised by consumers for other internet-enabled electronic devices are similar to those concerns for second-hand robots. This provides an opportunity for the industry to break down the barriers for a circular economy earlier in the technology maturity process than has been seen for other electronics.

2.
Front Robot AI ; 5: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33500898

RESUMEN

We introduce the Xpuck swarm, a research platform with an aggregate raw processing power in excess of two teraflops. The swarm uses 16 e-puck robots augmented with custom hardware that uses the substantial CPU and GPU processing power available from modern mobile system-on-chip devices. The augmented robots, called Xpucks, have at least an order of magnitude greater performance than previous swarm robotics platforms. The platform enables new experiments that require high individual robot computation and multiple robots. Uses include online evolution or learning of swarm controllers, simulation for answering what-if questions about possible actions, distributed super-computing for mobile platforms, and real-world applications of swarm robotics that requires image processing, or SLAM. The teraflop swarm could also be used to explore swarming in nature by providing platforms with similar computational power as simple insects. We demonstrate the computational capability of the swarm by implementing a fast physics-based robot simulator and using this within a distributed island model evolutionary system, all hosted on the Xpucks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA