Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(2): e2207130, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36305045

RESUMEN

Mesocrystals are a class of nanostructured material, where a multiple-length-scale structure is a prerequisite of many interesting phenomena. Resolving the mesocrystal structure is quite challenging due to their structuration on different length scales. The combination of small- and wide-angle X-ray scattering (SAXS and WAXS) techniques offers the possibility of non-destructively probing mesocrystalline structures simultaneously, over multiple length scales to reveal their microscopic structure. This work describes how high dynamical range of modern detectors sheds light on the weak features of scattering, significantly increasing the information content. The detailed analysis of X-ray diffraction (XRD) from the magnetite mesocrystals with different particle sizes and shapes is described, in tandem with electron microscopy. The revealed features provide valuable input to the models of mesocrystal growth and the choice of structural motif; the impact on magnetic properties is discussed.

2.
Nanoscale ; 10(41): 19272-19276, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30310904

RESUMEN

EuO is unique, because it belongs to the few solids combining semiconducting properties (Egap = 1.1 eV) with native ferromagnetism. For future applications of EuO, e.g. as spin-filters or for sensors, one has to learn how defined nanostructures can be prepared. Unlike other ceramic oxides, there are no established soft-chemistry routes (e.g. sol-gel) towards EuO nanomaterials e.g. porous materials. This is due to the labile nature of the oxidation state Eu(+ii). We present a particle-based method leading to a EuO aerogel. Instead of making the target material directly, we use nanoparticles of an organic-inorganic hybrid phase (Eu2O3-benzoate) and assemble those into an aerogel, followed by the transformation into phase-pure EuO. It is shown that organic aldehydes act as capping agents for controlling the morphogenesis of the hybrid particles. Depending on the steric demand of the aldehyde, one obtains plate-like particles or nanorods with increasing aspect ratio. The particles form a gel, when the aspect ratio is increased to >20. After supercritical drying, one receives a nanorod-based aerogel. Treatment of the latter with Eu-vapor leads to reduction of the Eu2O3 domains to EuO while retaining the aerogel structure. Proof of ferromagnetism in the resulting EuO aerogel was delivered by SQUID measurements.

3.
Nanoscale ; 7(40): 16969-82, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26415672

RESUMEN

The precise control over electronic and optical properties of semiconductor (SC) materials is pivotal for a number of important applications like in optoelectronics, photocatalysis or in medicine. It is well known that the incorporation of heteroelements (doping as a classical case) is a powerful method for adjusting and enhancing the functionality of semiconductors. Independent from that, there already has been a tremendous progress regarding the synthesis of differently sized and shaped SC nanoparticles, and quantum-size effects are well documented experimentally and theoretically. Whereas size and shape control of nanoparticles work fairly well for the pure compounds, the presence of a heteroelement is problematic because the impurities interfere strongly with bottom up approaches applied for the synthesis of such particles, and effects are even stronger, when the heteroelement is aimed to be incorporated into the target lattice for chemical doping. Therefore, realizing coincident shape control of nanoparticle colloids and their doping still pose major difficulties. Due to a special mechanism of the emulsion based synthesis method presented here, involving a gelation of emulsion droplets prior to crystallization of shape-anisotropic ZnO nanoparticles, heteroelements can be effectively entrapped inside the lattice. Different nanocrystal shapes such as nanorods, -prisms, -plates, and -spheres can be obtained, determined by the use of certain emulsification agents. The degree of morphologic alterations depends on the type of incorporated heteroelement M(n+), concentration, and it seems that some shapes are more tolerant against doping than others. Focus was then set on the incorporation of Eu(3+) inside the ZnO particles, and it was shown that nanocrystal shape and aspect ratios could be adjusted while maintaining a fixed dopant level. Special PL properties could be observed implying energy transfer from ZnO excited near its band-gap (3.3 eV) to the Eu(3+) states mediated by defect luminescence of the nanoparticles. Indications for an influence of shape on photoluminescence (PL) properties were found. Finally, rod-like Eu@ZnO colloids were used as tracers to investigate their uptake into biological samples like HeLa cells. The PL was sufficient for identifying green and red emission under visible light excitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA