Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125999

RESUMEN

Elastin, a key structural protein essential for the elasticity of the skin and elastogenic tissues, degrades with age. Replenishing elastin holds promise for anti-aging cosmetics and the supplementation of elastic activities of the cardiovascular system. We employed RiboScreenTM, a technology for identifying molecules that enhance the production of specific proteins, to target the production of tropoelastin. We make use of RiboScreenTM in two crucial steps: first, to pinpoint a target ribosomal protein (TRP), which acts as a switch to increase the production of the protein of interest (POI), and second, to identify small molecules that activate this ribosomal protein switch. Using RiboScreenTM, we identified ribosomal protein L40, henceforth eL40, as a TRP switch to boost tropoelastin production. Drug discovery identified a small-molecule hit that binds to eL40. In-cell treatment demonstrated activity of the eL40 ligand and delivered increased tropoelastin production levels in a dose-dependent manner. Thus, we demonstrate that RiboScreenTM can successfully identify a small-molecule hit capable of selectively enhancing tropoelastin production. This compound has the potential to be developed for topical or systemic applications to promote skin rejuvenation and to supplement elastic functionality within the cardiovascular system.


Asunto(s)
Elastina , Proteínas Ribosómicas , Ribosomas , Tropoelastina , Tropoelastina/metabolismo , Tropoelastina/genética , Humanos , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Elastina/metabolismo , Elastina/genética , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Ligandos , Bibliotecas de Moléculas Pequeñas/farmacología
2.
JID Innov ; 4(1): 100240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282649

RESUMEN

Severe junctional epidermolysis bullosa is a rare genetic, postpartum lethal skin disease, predominantly caused by nonsense/premature termination codon (PTC) sequence variants in LAMB3 gene. LAMB3 encodes LAMB3, the ß subunit of epidermal-dermal skin anchor laminin 332. Most translational reads of a PTC mRNA deliver truncated, nonfunctional proteins, whereas an endogenous PTC readthrough mechanism produces full-length protein at minimal and insufficient levels. Conventional translational readthrough-inducing drugs amplify endogenous PTC readthrough; however, translational readthrough-inducing drugs are either proteotoxic or nonselective. Ribosome editing is a more selective and less toxic strategy. This technique identified ribosomal protein L35/uL29 (ie, RpL35) and RpL35-ligands repurposable drugs artesunate and atazanavir as molecular tools to increase production levels of full-length LAMB3. To evaluate ligand activity in living cells, we monitored artesunate and atazanavir treatment by dual luciferase reporter assays. Production levels of full-length LAMB3 increased up to 200% upon artesunate treatment, up to 150% upon atazanavir treatment, and up to 170% upon combinatorial treatment of RpL35 ligands at reduced drug dosage, with an unrelated PTC reporter being nonresponsive. Proof of bioactivity of RpL35 ligands in selective increase of full-length LAMB3 provides the basis for an alternative, targeted therapeutic route to replenish LAMB3 in severe junctional epidermolysis bullosa.

3.
PLoS One ; 8(7): e67609, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861776

RESUMEN

Evidence is now accumulating that sub-populations of ribosomes - so-called specialized ribosomes - can favour the translation of subsets of mRNAs. Here we use a large collection of diploid yeast strains, each deficient in one or other copy of the set of ribosomal protein (RP) genes, to generate eukaryotic cells carrying distinct populations of altered 'specialized' ribosomes. We show by comparative protein synthesis assays that different heterologous mRNA reporters based on luciferase are preferentially translated by distinct populations of specialized ribosomes. These mRNAs include reporters carrying premature termination codons (PTC) thus allowing us to identify specialized ribosomes that alter the efficiency of translation termination leading to enhanced synthesis of the wild-type protein. This finding suggests that these strains can be used to identify novel therapeutic targets in the ribosome. To explore this further we examined the translation of the mRNA encoding the extracellular matrix protein laminin ß3 (LAMB3) since a LAMB3-PTC mutant is implicated in the blistering skin disease Epidermolysis bullosa (EB). This screen identified specialized ribosomes with reduced levels of RP L35B as showing enhanced synthesis of full-length LAMB3 in cells expressing the LAMB3-PTC mutant. Importantly, the RP L35B sub-population of specialized ribosomes leave both translation of a reporter luciferase carrying a different PTC and bulk mRNA translation largely unaltered.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genes Reporteros , Luciferasas/metabolismo , Modelos Moleculares , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA