Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB J ; 14(2): 379-90, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10657994

RESUMEN

Regulation of transcriptional responses in growth-arrested human cells under conditions that promote potentially lethal damage repair after ionizing radiation (IR) is poorly understood. Sp1/retinoblastoma control protein (RCP) DNA binding increased within 30 min and peaked at 2-4 h after IR (450-600 cGy) in confluent radioresistant human malignant melanoma (U1-Mel) cells. Increased phosphorylation of Sp1 directly corresponded to Sp1/RCP binding and immediate-early gene induction, whereas pRb remained hypophosphorylated. Transfection of U1-Mel cells with the human papillomavirus E7 gene abrogated Sp1/RCP induction and G(0)/G(1) cell cycle checkpoint arrest responses, increased apoptosis and radiosensitivity, and augmented genetic instability (i.e., increased polyploidy cells) after IR. Increased NF-kappaB DNA binding in U1-Mel cells after IR treatment lasted much longer (i.e., >20 h). U1-Mel cells overexpressing dominant-negative IkappaBalpha S32/36A mutant protein were significantly more resistant to IR exposure and retained both G(2)/M and G(0)/G(1) cell cycle checkpoint responses without significant genetic instability (i.e., polyploid cell populations were not observed). Nuclear p53 protein levels and DNA binding activity increased only after high doses of IR (>1200 cGy). Disruption of p53 responses in U1-Mel cells by E6 transfection also abrogated G(0)/G(1) cell cycle checkpoint arrest responses and increased polyploidy after IR, but did not alter radiosensitivity. These data suggest that abrogation of individual components of this coordinate IR-activated transcription factor response may lead to divergent alterations in cell cycle checkpoints, genomic instability, apoptosis, and survival. Such coordinate transcription factor activation in human cancer cells is reminiscent of prokaryotic SOS responses, and further elucidation of these events should shed light on the initial molecular events in the chromosome instability phenotype.-Yang, C.-R., Wilson-Van Patten, C., Planchon, S. M., Wuerzberger-Davis, S. M., Davis, T. W., Cuthill, C., Miyamoto, S., Boothman, D. A. Coordinate modulation of Sp1, NF-kappa B, and p53 in confluent human malignant melanoma cells after ionizing radiation.


Asunto(s)
Melanoma Experimental/radioterapia , FN-kappa B/metabolismo , Factor de Transcripción Sp1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ciclo Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Humanos , Melanoma Experimental/metabolismo , Tolerancia a Radiación , Proteína de Retinoblastoma , Rayos X
2.
Cancer Res ; 59(3): 538-41, 1999 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-9973196

RESUMEN

The DNA mismatch repair gene hMLH1 is reported to function in mutation avoidance, cell cycle checkpoint control, the cytotoxicity of various DNA-damaging agents, and transcription-coupled nucleotide excision repair. Formal proof of the involvement of hMLH1 in these processes requires single gene complementation. We have stably expressed hMLH1 from a transfected cDNA in Mlh1-deficient mouse embryonic fibroblasts. Expression of hMLH1 restored normal levels of mPMS2 protein, reduced spontaneous base substitution and microsatellite mutations, increased sensitivity to the toxic effects of 6-thioguanine (6-TG), and restored 6-TG-induced cell cycle arrest. Our studies confirm that hMLH1 has an essential role in the maintenance of genomic stability and the potentiation of 6-TG cytotoxicity and provide a system for detailed structure/function analysis of the hMLH1 protein.


Asunto(s)
Disparidad de Par Base , Reparación del ADN/genética , ADN Complementario/genética , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Antimetabolitos Antineoplásicos/toxicidad , Proteínas Portadoras , Células Cultivadas , ADN Complementario/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiología , Fase G2/efectos de los fármacos , Fase G2/fisiología , Humanos , Ratones , Homólogo 1 de la Proteína MutL , Mutación , Proteínas de Neoplasias/fisiología , Proteínas Nucleares , Tioguanina/toxicidad , Transfección
3.
Cancer Res ; 58(4): 767-78, 1998 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-9485033

RESUMEN

A role for the Mut L homologue-1 (MLH1) protein, a necessary component of DNA mismatch repair (MMR), in G2-M cell cycle checkpoint arrest after 6-thioguanine (6-TG) exposure was suggested previously. A potential role for MLH1 in G1 arrest and/or G1-S transition after damage was, however, not discounted. We report that MLH1-deficient human colon carcinoma (HCT116) cells showed decreased survival and a concomitant deficiency in G2-M cell cycle checkpoint arrest after ionizing radiation (IR) compared with genetically matched, MMR-corrected human colon carcinoma (HCT116 3-6) cells. Similar responses were noted between murine MLH1 knockout compared to wild-type primary embryonic fibroblasts. MMR-deficient HCT116 cells or embryonic fibroblasts from MLH1 knockout mice also demonstrated classic DNA damage tolerance responses after 6-TG exposure. Interestingly, an enhanced p53 protein induction response was observed in HCT116 3-6 (MLH1+) compared with HCT116 (MLH1-) cells after IR or 6-TG. Retroviral vector-mediated expression of the E6 protein did not, however, affect the enhanced G2-M cell cycle arrest observed in HCT116 3-6 compared with MLH1-deficient HCT116 cells. A role for MLH1 in G2-M cell cycle checkpoint control, without alteration in G1, after IR was also suggested by similar S-phase progression between irradiated MLH1-deficient and MLH1-proficient human or murine cells. Introduction of a nocodazole-induced G2-M block, which corrected the MLH1-mediated G2-M arrest deficiency in HCT116 cells, clearly demonstrated that HCT116 and HCT116 3-6 cells did not differ in G1 arrest or G1-S cell cycle transition after IR. Thus, our data indicate that MLH1 does not play a major role in G1 cell cycle transition or arrest. We also show that human MLH1 and MSH2 steady-state protein levels did not vary with damage or cell cycle changes caused by IR or 6-TG. MLH1-mediated G2-M cell cycle delay (caused by either MMR proofreading of DNA lesions or by a direct function of the MLH1 protein in cell cycle arrest) may be important for DNA damage detection and repair prior to chromosome segregation to eliminate carcinogenic lesions (possibly brought on by misrepair) in daughter cells.


Asunto(s)
Ciclo Celular/efectos de la radiación , Neoplasias del Colon/genética , Proteínas de Neoplasias/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras , Supervivencia Celular , Células Cultivadas , Reparación del ADN , Fibroblastos , Humanos , Ratones , Ratones Noqueados , Homólogo 1 de la Proteína MutL , Proteínas de Neoplasias/genética , Proteínas Nucleares , Tioguanina/farmacología , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/fisiología
4.
Cancer Res ; 57(2): 206-8, 1997 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-9000555

RESUMEN

Hereditary nonpolyposis colorectal cancer is a cancer susceptibility syndrome that has been found to be caused by mutations in any of several genes involved in DNA mismatch repair, including hMSH2, hMLH1, or hPMS2. Recent reports have suggested that hMSH2 and hMLH1 have a role in the regulation of the cell cycle. To determine if these genes are cell cycle regulated, we examined their mRNA and protein levels throughout the cell cycle in IMR-90 normal human lung fibroblasts. We demonstrate that the levels of hMSH2 mRNA and protein do not change appreciably throughout the cell cycle. Although hMLH1 mRNA levels remained constant, there was a modest (approximately 50%) increase in its protein levels during late G1 and S phase. The levels of hPMS2 mRNA fluctuated (decreasing 50% in G1 and increasing 50% in S phase), whereas hPMS2 protein levels increased 50% in late G1 and S phase. Our data indicate that, at least in normal cells, the machinery responsible for the detection and repair of mismatched DNA bases is present throughout the cell cycle.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Enzimas Reparadoras del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN , Genes cdc/fisiología , Proteínas de Neoplasias/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Ciclo Celular/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/metabolismo , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Proteína 2 Homóloga a MutS , Proteínas de Neoplasias/genética , Proteínas/genética , Proteínas Proto-Oncogénicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA