Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JAMA Netw Open ; 6(6): e2320713, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389874

RESUMEN

Importance: Morbidity and mortality after pediatric cardiac arrest are chiefly due to hypoxic-ischemic brain injury. Brain features seen on magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) after arrest may identify injury and aid in outcome assessments. Objective: To analyze the association of brain lesions seen on T2-weighted MRI and diffusion-weighted imaging and N-acetylaspartate (NAA) and lactate concentrations seen on MRS with 1-year outcomes after pediatric cardiac arrest. Design, Setting, and Participants: This multicenter cohort study took place in pediatric intensive care units at 14 US hospitals between May 16, 2017, and August 19, 2020. Children aged 48 hours to 17 years who were resuscitated from in-hospital or out-of-hospital cardiac arrest and who had a clinical brain MRI or MRS performed within 14 days postarrest were included in the study. Data were analyzed from January 2022 to February 2023. Exposure: Brain MRI or MRS. Main Outcomes and Measures: The primary outcome was an unfavorable outcome (either death or survival with a Vineland Adaptive Behavior Scales, Third Edition, score of <70) at 1 year after cardiac arrest. MRI brain lesions were scored according to region and severity (0 = none, 1 = mild, 2 = moderate, 3 = severe) by 2 blinded pediatric neuroradiologists. MRI Injury Score was a sum of T2-weighted and diffusion-weighted imaging lesions in gray and white matter (maximum score, 34). MRS lactate and NAA concentrations in the basal ganglia, thalamus, and occipital-parietal white and gray matter were quantified. Logistic regression was performed to determine the association of MRI and MRS features with patient outcomes. Results: A total of 98 children, including 66 children who underwent brain MRI (median [IQR] age, 1.0 [0.0-3.0] years; 28 girls [42.4%]; 46 White children [69.7%]) and 32 children who underwent brain MRS (median [IQR] age, 1.0 [0.0-9.5] years; 13 girls [40.6%]; 21 White children [65.6%]) were included in the study. In the MRI group, 23 children (34.8%) had an unfavorable outcome, and in the MRS group, 12 children (37.5%) had an unfavorable outcome. MRI Injury Scores were higher among children with an unfavorable outcome (median [IQR] score, 22 [7-32]) than children with a favorable outcome (median [IQR] score, 1 [0-8]). Increased lactate and decreased NAA in all 4 regions of interest were associated with an unfavorable outcome. In a multivariable logistic regression adjusted for clinical characteristics, increased MRI Injury Score (odds ratio, 1.12; 95% CI, 1.04-1.20) was associated with an unfavorable outcome. Conclusions and Relevance: In this cohort study of children with cardiac arrest, brain features seen on MRI and MRS performed within 2 weeks after arrest were associated with 1-year outcomes, suggesting the utility of these imaging modalities to identify injury and assess outcomes.


Asunto(s)
Imagen por Resonancia Magnética , Paro Cardíaco Extrahospitalario , Femenino , Niño , Humanos , Lactante , Estudios de Cohortes , Encéfalo/diagnóstico por imagen , Espectroscopía de Resonancia Magnética
2.
JAMA Netw Open ; 5(9): e2230518, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36074465

RESUMEN

Importance: Families and clinicians have limited validated tools available to assist in estimating long-term outcomes early after pediatric cardiac arrest. Blood-based brain-specific biomarkers may be helpful tools to aid in outcome assessment. Objective: To analyze the association of blood-based brain injury biomarker concentrations with outcomes 1 year after pediatric cardiac arrest. Design, Setting, and Participants: The Personalizing Outcomes After Child Cardiac Arrest multicenter prospective cohort study was conducted in pediatric intensive care units at 14 academic referral centers in the US between May 16, 2017, and August 19, 2020, with the primary investigators blinded to 1-year outcomes. The study included 120 children aged 48 hours to 17 years who were resuscitated after cardiac arrest, had pre-cardiac arrest Pediatric Cerebral Performance Category scores of 1 to 3 points, and were admitted to an intensive care unit after cardiac arrest. Exposure: Cardiac arrest. Main Outcomes and Measures: The primary outcome was an unfavorable outcome (death or survival with a Vineland Adaptive Behavior Scales, third edition, score of <70 points) at 1 year after cardiac arrest. Glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal esterase L1 (UCH-L1), neurofilament light (NfL), and tau concentrations were measured in blood samples from days 1 to 3 after cardiac arrest. Multivariate logistic regression and area under the receiver operating characteristic curve (AUROC) analyses were performed to examine the association of each biomarker with outcomes on days 1 to 3. Results: Among 120 children with primary outcome data available, the median (IQR) age was 1.0 (0-8.5) year; 71 children (59.2%) were male. A total of 5 children (4.2%) were Asian, 19 (15.8%) were Black, 81 (67.5%) were White, and 15 (12.5%) were of unknown race; among 110 children with data on ethnicity, 11 (10.0%) were Hispanic, and 99 (90.0%) were non-Hispanic. Overall, 70 children (58.3%) had a favorable outcome, and 50 children (41.7%) had an unfavorable outcome, including 43 deaths. On days 1 to 3 after cardiac arrest, concentrations of all 4 measured biomarkers were higher in children with an unfavorable vs a favorable outcome at 1 year. After covariate adjustment, NfL concentrations on day 1 (adjusted odds ratio [aOR], 5.91; 95% CI, 1.82-19.19), day 2 (aOR, 11.88; 95% CI, 3.82-36.92), and day 3 (aOR, 10.22; 95% CI, 3.14-33.33); UCH-L1 concentrations on day 2 (aOR, 11.27; 95% CI, 3.00-42.36) and day 3 (aOR, 7.56; 95% CI, 2.11-27.09); GFAP concentrations on day 2 (aOR, 2.31; 95% CI, 1.19-4.48) and day 3 (aOR, 2.19; 95% CI, 1.19-4.03); and tau concentrations on day 1 (aOR, 2.44; 95% CI, 1.14-5.25), day 2 (aOR, 2.28; 95% CI, 1.31-3.97), and day 3 (aOR, 2.04; 95% CI, 1.16-3.57) were associated with an unfavorable outcome. The AUROC models were significantly higher with vs without the addition of NfL on day 2 (AUROC, 0.932 [95% CI, 0.877-0.987] vs 0.871 [95% CI, 0.793-0.949]; P = .02) and day 3 (AUROC, 0.921 [95% CI, 0.857-0.986] vs 0.870 [95% CI, 0.786-0.953]; P = .03). Conclusions and Relevance: In this cohort study, blood-based brain injury biomarkers, especially NfL, were associated with an unfavorable outcome at 1 year after pediatric cardiac arrest. Additional evaluation of the accuracy of the association between biomarkers and neurodevelopmental outcomes beyond 1 year is needed.


Asunto(s)
Lesiones Encefálicas , Paro Cardíaco , Biomarcadores , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Estudios Prospectivos
3.
Brain Imaging Behav ; 15(6): 2804-2812, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34985618

RESUMEN

Traumatic brain injury (TBI) can produce heterogeneous injury patterns including a variety of hemorrhagic and non-hemorrhagic lesions. The impact of lesion size, location, and interaction between total number and location of contusions may influence the occurrence of seizures after TBI. We report our methodologic approach to this question in this preliminary report of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We describe lesion identification and segmentation of hemorrhagic contusions by early posttraumatic magnetic resonance imaging (MRI). We describe the preliminary methods of manual lesion segmentation in an initial cohort of 32 TBI patients from the EpiBioS4Rx cohort and the preliminary association of hemorrhagic contusion and edema location and volume to seizure incidence.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Contusiones , Epilepsia , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Biología Computacional , Epilepsia/diagnóstico por imagen , Epilepsia/tratamiento farmacológico , Humanos , Imagen por Resonancia Magnética
4.
Neurobiol Dis ; 123: 110-114, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30048805

RESUMEN

The Epilepsy Bioinformatics Study for Anti-epileptogenic Therapy (EpiBioS4Rx) is a longitudinal prospective observational study funded by the National Institute of Health (NIH) to discover and validate observational biomarkers of epileptogenesis after traumatic brain injury (TBI). A multidisciplinary approach has been incorporated to investigate acute electrical, neuroanatomical, and blood biomarkers after TBI that may predict the development of post-traumatic epilepsy (PTE). We plan to enroll 300 moderate-severe TBI patients with a frontal and/or temporal lobe hemorrhagic contusion. Acute evaluation with blood, imaging and electroencephalographic monitoring will be performed and then patients will be tracked for 2 years to determine the incidence of PTE. Validation of selected biomarkers that are discovered in planned animal models will be a principal feature of this work. Specific hypotheses regarding the discovery of biomarkers have been set forth in this study. An international cohort of 13 centers spanning 2 continents will be developed to facilitate this study, and for future interventional studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico , Epilepsia Postraumática/diagnóstico , Biomarcadores/sangre , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Biología Computacional , Epilepsia Postraumática/sangre , Epilepsia Postraumática/etiología , Epilepsia Postraumática/fisiopatología , Humanos , Estudios Longitudinales , Estudios Observacionales como Asunto , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA