Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(7): 8538-8551, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33566585

RESUMEN

We report on the low-temperature growth of crystalline Ga2O3 films on Si, sapphire, and glass substrates using plasma-enhanced atomic layer deposition (PEALD) featuring a hollow-cathode plasma source. Films were deposited by using triethylgallium (TEG) and Ar/O2 plasma as metal precursor and oxygen co-reactant, respectively. Growth experiments have been performed within 150-240 °C substrate temperature and 30-300 W radio-frequency (rf) plasma power ranges. Additionally, each unit AB-type ALD cycle was followed by an in situ Ar plasma annealing treatment, which consisted of an extra (50-300 W) Ar plasma exposure for 20 s ending just before the next TEG pulse. The growth per cycle (GPC) of the films without Ar plasma annealing step ranged between 0.69 and 1.31 Å/cycle, and as-grown refractive indices were between 1.67 and 1.75 within the scanned plasma power range. X-ray diffraction (XRD) measurements showed that Ga2O3 films grown without in situ Ar plasma annealing exhibited amorphous character irrespective of substrate temperature and rf power values. With the incorporation of the in situ Ar plasma annealing process, the GPC of Ga2O3 films ranged between 0.76 and 1.03 Å/cycle along with higher refractive index values of 1.75-1.79. The increased refractive index (1.79) and slightly reduced GPC (1.03 Å/cycle) at 250 W plasma annealing indicated possible densification and crystallization of the films. Indeed, X-ray measurements confirmed that in situ plasma annealed films grow in a monoclinic ß-Ga2O3 crystal phase. The film crystallinity and density further enhance (from 5.11 to 5.60 g/cm3) by increasing the rf power value used during in situ Ar plasma annealing process. X-ray photoelectron spectroscopy (XPS) measurement of the ß-Ga2O3 sample grown under optimal in situ plasma annealing power (250 W) revealed near-ideal film stoichiometry (O/Ga of ∼1.44) with relatively low carbon content (∼5 at. %), whereas 50 W rf power treated film was highly non-stoichiometric (O/Ga of ∼2.31) with considerably elevated carbon content. Our results demonstrate the effectiveness of in situ Ar plasma annealing process to transform amorphous wide bandgap oxide semiconductors into crystalline films without needing high-temperature post-deposition annealing treatment.

2.
RSC Adv ; 10(46): 27357-27368, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35516968

RESUMEN

In this work, we have studied the role varying nitrogen plasma compositions play in the low-temperature plasma-assisted growth of indium nitride (InN) thin films. Films were deposited on Si (100) substrates using a plasma-enhanced atomic layer deposition (PE-ALD) reactor featuring a capacitively-coupled hollow-cathode plasma source. Trimethylindium (TMI) and variants of nitrogen plasma (N2-only, Ar/N2, and Ar/N2/H2) were used as the metal precursor and nitrogen co-reactant, respectively. In situ ellipsometry was employed to observe individual ligand exchange and plasma-assisted ligand removal events in real-time during the growth process. Only the samples grown under hydrogen-free nitrogen plasmas (Ar/N2 or N2-only) resulted in nearly stoichiometric single-phase crystalline hexagonal InN (h-InN) films at substrate temperatures higher than 200 °C under 100 W rf-plasma power. Varying the plasma gas composition by adding H2 led to rather drastic microstructural changes resulting in a cubic phase oxide (c-In2O3) film. Combining the in situ measured growth evolution with ex situ materials characterization, we propose a simplified model describing the possible surface reactions/groups during a unit PE-ALD cycle, which depicts the highly efficient oxygen incorporation in the presence of hydrogen radicals. Further structural, chemical, and optical characterization have been carried out on the optimal InN films grown with Ar/N2 plasma to extract film properties. Samples grown at lower substrate temperature (160 °C) and reduced/elevated rf-plasma power levels (50/150 W) displayed similar amorphous character, which is attributed to either insufficient surface energy or plasma-induced crystal damage. InN samples grown at 240 °C under 100 W rf-plasma showed clear polycrystalline h-InN layers with ∼20 nm average-sized single crystal domains exhibiting hexagonal symmetry.

3.
Sensors (Basel) ; 19(11)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167394

RESUMEN

Nanoparticle based chemical sensor arrays with four types of organo-functionalized gold nanoparticles (AuNPs) were introduced to classify 35 different teas, including black teas, green teas, and herbal teas. Integrated sensor arrays were made using microfabrication methods including photolithography and lift-off processing. Different types of nanoparticle solutions were drop-cast on separate active regions of each sensor chip. Sensor responses, expressed as the ratio of resistance change to baseline resistance (ΔR/R0), were used as input data to discriminate different aromas by statistical analysis using multivariate techniques and machine learning algorithms. With five-fold cross validation, linear discriminant analysis (LDA) gave 99% accuracy for classification of all 35 teas, and 98% and 100% accuracy for separate datasets of herbal teas, and black and green teas, respectively. We find that classification accuracy improves significantly by using multiple types of nanoparticles compared to single type nanoparticle arrays. The results suggest a promising approach to monitor the freshness and quality of tea products.

4.
Langmuir ; 29(46): 14335-43, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24111781

RESUMEN

Chemiresistive vapor sensors combining functionalized gold nanoparticles and single-stranded DNA oligomers are investigated to enhance specificity in chemical sensing. Sensors are made by depositing DNA-functionalized gold nanoparticles onto microfabricated electrodes using four distinct sequences. Sensor performance is evaluated for response to relative humidity and exposure to vapor analytes including ethanol, methanol, hexane, dimethyl methylphosphonate, and toluene under different relative humidity. It is found that sensors display a nonmonotonic resistance change toward increasing humidity due to the combined effects of hydration induced swelling and ionic conduction. Responses to vapor analytes show sequence-dependent patterns as well as a strong influence of humidity. Overall, the findings are encouraging for using DNA oligomers to enhance specificity in chemical sensing.


Asunto(s)
Técnicas Biosensibles/métodos , ADN de Cadena Simple/química , Oro/química , Nanopartículas del Metal/química , Nanocompuestos/química , Secuencia de Bases , Técnicas Biosensibles/instrumentación , ADN de Cadena Simple/genética , Impedancia Eléctrica , Electrodos , Humedad , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/genética , Compuestos de Sulfhidrilo/química , Propiedades de Superficie , Volatilización
5.
Chem Commun (Camb) ; 48(7): 1063-5, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22158836

RESUMEN

Pt was deposited onto tungsten carbide powders using atomic layer deposition to produce core-shell catalysts for the hydrogen evolution reaction (HER). The Pt loading on these catalysts was reduced nearly ten-fold compared to a bulk Pt catalyst while equivalent HER activities were observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA