Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38932016

RESUMEN

Polymers have a wide range of applications depending on their composition, size, and architecture. Varying any of these three characteristics can greatly impact the resulting chemical, physical, and mechanical properties. While many techniques are available to determine polymer composition and size, determining the exact polymer architecture is more challenging. Herein, tandem mass spectrometry (MS/MS) and ion mobility mass spectrometry (IM-MS) methods are utilized to derive crucial architectural information about dithiol-yne comb polymers. Based on their unique fragmentation products and IM drift times, dithiol-yne oligomers with distinct architectures were successfully differentiated and characterized. Additionally, experimental collision cross-sections (Ω) derived via IM-MS were compared to theoretically extracted Ω values from molecular dynamics simulated structures to deduce the architectural motif of these comb oligomers. Overall, this work demonstrates the benefits of combining various mass spectrometry techniques in order to gain a complete understanding of a complex polymer mixture.

2.
ACS Macro Lett ; 13(6): 658-663, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38747245

RESUMEN

Nucleophilic and non-nucleophilic bases have been employed in anionic oligomerization of unsaturated δ-valerolactone (3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one) (1). Compared to the seminal findings with 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), the unsaturated lactone reacts with guanidines, disilazanes, and phosphazenes both in bulk and in solution with higher productivities and activities, reaching full conversion with turnover frequencies up to 382 h-1. Additionally, reactions using phosphazenes and NaHMDS were active at 1 mol % catalyst loadings both in solvent and in bulk monomer at room temperature. Characterization of the reaction products by 1H, 13C, FTIR, MALDI-MS, tandem mass spectrometry (MS/MS), and ion mobility mass spectrometry (IM-MS) revealed microstructural differences dependent on the nucleophilicity of the organocatalytic base and reaction conditions. The products from phosphazene-catalyzed reactions are consistent with selective vinylogous 1,4-conjugate addition, whereas both conjugate addition and ring-opening mechanisms are observed in TBD. DSC reveals that these microstructures can be tuned to have a Tg range between -18 and 80 °C, while SEC and MALDI-MS reveal that only low molar mass oligomers are formed (748-5949 g/mol). From these results, an approach for selectively favoring the vinylogous 1,4-conjugate addition pathway is obtained over ring-opening reactivity.

3.
Mass Spectrom Rev ; 43(3): 427-476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37070280

RESUMEN

Ever since the inception of synthetic polymeric materials in the late 19th century, the number of studies on polymers as well as the complexity of their structures have only increased. The development and commercialization of new polymers with properties fine-tuned for specific technological, environmental, consumer, or biomedical applications requires powerful analytical techniques that permit the in-depth characterization of these materials. One such method with the ability to provide chemical composition and structure information with high sensitivity, selectivity, specificity, and speed is mass spectrometry (MS). This tutorial review presents and exemplifies the various MS techniques available for the elucidation of specific structural features in a synthetic polymer, including compositional complexity, primary structure, architecture, topology, and surface properties. Key to every MS analysis is sample conversion to gas-phase ions. This review describes the fundamentals of the most suitable ionization methods for synthetic materials and provides relevant sample preparation protocols. Most importantly, structural characterizations via one-step as well as hyphenated or multidimensional approaches are introduced and demonstrated with specific applications, including surface sensitive and imaging techniques. The aim of this tutorial review is to illustrate the capabilities of MS for the characterization of large, complex polymers and emphasize its potential as a powerful compositional and structural elucidation tool in polymer chemistry.

4.
Anal Chim Acta ; 1283: 341963, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977787

RESUMEN

Polymer thin films are often used in transdermal patches as a method of continuous drug administration for patients with chronic illness. Understanding the drug segregation and distribution within these films is important for monitoring proper drug release over time. Surface-layer matrix-assisted laser desorption/ionization mass spectrometry imaging (SL-MALDI-MSI) is a unique analytical technique that provides an optical representation of chemical compositions that exist at the surface of polymeric materials. Solvent-free sublimation is employed for application of matrix to the sample surface, so that only molecules in direct contact with the matrix layer are detected. Here, these methodologies are utilized to visualize variations in drug concentration at both the air and substrate interface in pharmaceutical-loaded polymer films.


Asunto(s)
Polímeros , Urea , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Preparaciones Farmacéuticas , Rayos Láser
5.
Macromol Rapid Commun ; 44(1): e2200216, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35557023

RESUMEN

Three sets of polyoxometalate (POM)-based amphiphilic hybrid macromolecules with different rigidity in their organic tails are used as models to understand the effect of molecular rigidity on their possible self-recognition feature during self-assembly processes. Self-recognition is achieved in the mixed solution of two structurally similar, sphere-rigid T-shape-linked oligofluorene(TOF4 ) rod amphiphiles, with the hydrophilic clusters being Anderson (Anderson-TOF4 ) and Dawson (Dawson-TOF4 ), respectively. Anderson-TOF4 is observed to self-assemble into onion-like multilayer structures and Dawson-TOF4 forms multilayer vesicles. The self-assembly is controlled by the interdigitation of hydrophobic rods and the counterion-mediated attraction among charged hydrophilic inorganic clusters. When the hydrophobic blocks are less rigid, e.g., partially rigid polystyrene and fully flexible alkyl chains, self-recognition is not observed, attributing to the flexible conformation of hydrophobic molecules in the solvophobic domain. This study reveals that the self-recognition among amphiphiles can be achieved by the geometrical limitation of the supramolecular structure due to the rigidity of solvophobic domains.


Asunto(s)
Micelas , Sustancias Macromoleculares/química , Conformación Molecular , Interacciones Hidrofóbicas e Hidrofílicas
6.
ACS Macro Lett ; 10(10): 1254-1259, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35549034

RESUMEN

The utilization of carbon dioxide as a polymer feedstock is an ongoing challenge. This report describes the catalytic conversion of carbon dioxide and an olefin comonomer, 1,3-butadiene, into a polymer structure that arises from divergent propagation mechanisms. Disubstituted unsaturated δ-valerolactone 1 (EVL) was homopolymerized by the bifunctional organocatalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to produce a hydrolytically degradable polymer. Isolation and characterization of reaction intermediates using 1H, 13C, COSY, HSQC, and MS techniques revealed a vinylogous 1,4-conjugate addition dimer forms in addition to polymeric materials. Polymer number-average molecular weights up to 3760 g/mol and glass transition temperatures in the range of 25-52 °C were measured by GPC and DSC, respectively. The polymer microstructure was characterized by 1H, 13C, FTIR, MALDI-TOF MS, and ESI tandem MS/MS. The olefin/CO2-derived materials depolymerized by hydrolysis at 80 °C in 1 M NaOH. This method and the observed chemical structures expand the materials and properties that can be obtained from carbon dioxide and olefin feedstocks.


Asunto(s)
Dióxido de Carbono , Polímeros , Alquenos , Butadienos , Dióxido de Carbono/química , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA