Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Appl Environ Microbiol ; 81(3): 1013-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25416773

RESUMEN

The formation of biofilms is an important survival strategy allowing rhizobia to live on soil particles and plant roots. Within the microcolonies of the biofilm developed by Rhizobium leguminosarum, rhizobial cells interact tightly through lateral and polar connections, forming organized and compact cell aggregates. These microcolonies are embedded in a biofilm matrix, whose main component is the acidic exopolysaccharide (EPS). Our work shows that the O-chain core region of the R. leguminosarum lipopolysaccharide (LPS) (which stretches out of the cell surface) strongly influences bacterial adhesive properties and cell-cell cohesion. Mutants defective in the O chain or O-chain core moiety developed premature microcolonies in which lateral bacterial contacts were greatly reduced. Furthermore, cell-cell interactions within the microcolonies of the LPS mutants were mediated mostly through their poles, resulting in a biofilm with an altered three-dimensional structure and increased thickness. In addition, on the root epidermis and on root hairs, O-antigen core-defective strains showed altered biofilm patterns with the typical microcolony compaction impaired. Taken together, these results indicate that the surface-exposed moiety of the LPS is crucial for proper cell-to-cell interactions and for the formation of robust biofilms on different surfaces.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Lipopolisacáridos/metabolismo , Antígenos O/metabolismo , Raíces de Plantas/microbiología , Rhizobium leguminosarum/fisiología , Lipopolisacáridos/genética , Datos de Secuencia Molecular , Antígenos O/genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Análisis de Secuencia de ADN
2.
Dalton Trans ; 43(34): 12917-25, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-25019262

RESUMEN

The chiral ligand S-1,2-bis(1H-benzimidazol-2-yl)ethanol, 1, reacts with manganese(II) salts to form cubanes which readily undergo oxidation reactions leading either to a tetranuclear manganese(II,III) mixed valence complex 4 or to a tetranuclear complex of ligand 5 where the secondary alcohol has been oxidised to an enolate. N-methylation of ligand 1 slows the oxidation reaction and stable manganese(II) cubanes may be isolated. The fully methylated ligand 2 gives a cubane of opposite helicity to that found previously for 1 with cobalt. The inversion may be explained by conformational analysis. Cyclic voltammetry suggests that the manganese cubanes reported here are insufficiently robust to store oxidising equivalents as in the oxygen evolving system of photosystem II.

3.
PLoS One ; 6(5): e19004, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21611159

RESUMEN

Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000-1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.


Asunto(s)
Antozoos/crecimiento & desarrollo , Antozoos/genética , Ambiente , Animales , Antozoos/anatomía & histología , Australia , Secuencia de Bases , Huesos/anatomía & histología , Chile , Análisis Discriminante , Flujo Génico/genética , Variación Genética , Geografía , Haplotipos/genética , Datos de Secuencia Molecular , Nueva Zelanda , Dinámica Poblacional
4.
Dalton Trans ; (6): 818-21, 2008 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-18239839

RESUMEN

The structures of the M4O4 units found in manganese and iron cubanes are analysed. The model used is that established previously for cobalt and nickel cubanes based on a distortion of the cube by compression of the oxygen atoms along a body diagonal. Further distortion which maintains a S4 or, less frequently, a C3 axis is generally seen. In spite of the distortion, average M-M distances in a cubane are quite constant for a given oxidation state and generally decrease as the metal is oxidised. The angles at the oxygen atoms increase from 90 degrees for the ideal cube to around 97 degrees . For metal oxidation states above or equal to +iii micro3-hydroxo ligands transform to micro3-oxo ligands. Ligands such as carboxylates which can bridge diagonal faces of the cube are generally seen with higher oxidation states.

5.
Dalton Trans ; (3): 332-41, 2007 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-17200753

RESUMEN

A survey of the crystal structures containing simple {M4O4} cubane units is reported. It shows that the average M-M distance in these complexes is relatively constant for a given metal ion M. The structures are all distorted from the idealised cube to a T(d) structure, and most show a further distortion which, however, usually maintains some elements of symmetry. A system for classifying the different types of ligand in these complexes is proposed. Two new cubanes of cobalt(II) and nickel(II) with the ligand (R,R)-bis-1,2-(1-methylbenzimidazol-2-yl)ethane-1,2-diol, (R,R)- or its enantiomer have been isolated and the crystal structure of the cobalt(II) complex confirms the cubane structure. Electronic, CD and (1)H NMR spectra and magnetic susceptibility data are reported. The magnetic data for these and other compounds in the literature are discussed in terms of the structural parameters.

6.
J Bacteriol ; 188(12): 4474-86, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16740954

RESUMEN

The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/fisiología , Rhizobium leguminosarum/fisiología , Ácidos , Proteínas Bacterianas/fisiología , Glicósido Hidrolasas , Polisacáridos Bacterianos/metabolismo
7.
Biol Res ; 37(4): 527-38, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15709679

RESUMEN

Ryanodine binds with high affinity and specificity to a class of Ca(2+)-release channels known as ryanodine receptors (RyR). The interaction with RyR results in a dramatic alteration in function with open probability (Po) increasing markedly and rates of ion translocation modified. We have investigated the features of ryanodine that govern the interaction of the ligand with RyR and the mechanisms underlying the subsequent alterations in function by monitoring the effects of congeners and derivatives of ryanodine (ryanoids) on individual RyR2 channels. While the interaction of all tested ryanoids results in an increased Po, the amplitude of the modified conductance state depends upon the structure of the ryanoid. We propose that different rates of cation translocation observed in the various RyR-ryanoid complexes represent different conformations of the channel stabilized by specific conformers of the ligand. On the time scale of a single channel experiment ryanodine binds irreversibly to the channel. However, alterations in structure yield some ryanoids with dissociation rate constants orders of magnitude greater than ryanodine. The probability of occurrence of the RyR-ryanoid complex is sensitive to trans-membrane voltage, with the vast majority of the influence of potential arising from a voltage-driven alteration in the affinity of the ryanoid-binding site.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Transporte Biológico/fisiología , Interacciones Farmacológicas/fisiología , Conductividad Eléctrica , Potenciales de la Membrana/fisiología , Rianodina/análogos & derivados , Relación Estructura-Actividad
8.
Biol. Res ; 37(4): 527-538, 2004. tab, graf
Artículo en Inglés | LILACS | ID: lil-437506

RESUMEN

Ryanodine binds with high affinity and specificity to a class of Ca2+-release channels known as ryanodine receptors (RyR). The interaction with RyR results in a dramatic alteration in function with open probability (Po) increasing markedly and rates of ion translocation modified. We have investigated the features of ryanodine that govern the interaction of the ligand with RyR and the mechanisms underlying the subsequent alterations in function by monitoring the effects of congeners and derivatives of ryanodine (ryanoids) on individual RyR2 channels. While the interaction of all tested ryanoids results in an increased Po, the amplitude of the modified conductance state depends upon the structure of the ryanoid. We propose that different rates of cation translocation observed in the various RyR-ryanoid complexes represent different conformations of the channel stabilized by specific conformers of the ligand. On the time scale of a single channel experiment ryanodine binds irreversibly to the channel. However, alterations in structure yield some ryanoids with dissociation rate constants orders of magnitude greater than ryanodine. The probability of occurrence of the RyR-ryanoid complex is sensitive to trans-membrane voltage, with the vast majority of the influence of potential arising from a voltage-driven alteration in the affinity of the ryanoid-binding site.


Asunto(s)
Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Rianodina/análisis , Rianodina/metabolismo , Transporte Biológico , Señalización del Calcio , Interacciones Farmacológicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA