Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 126(40): 8039-8047, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36189476

RESUMEN

Calcium aluminosilicate glasses have technological importance for a variety of industrial applications. However, the short-range structure of this glass system remains widely debated regarding the formation of oxygen triclusters. It is argued that triclusters are observed in high percentages within molecular dynamics simulations because of the high melting temperatures and correspondingly high fictive temperatures. This work explores the formation of such structural units by first simulating various compositions at different liquid temperatures to understand thermodynamic factors affecting the formation of such species. Structural results are then implemented into a statistical mechanical model which can predict the formation of triclusters at a given fictive temperature. Results show temperature and composition dependence of these structures, with aluminum charge modification favored in the peraluminous regime. It is concluded that oxygen triclusters are the preferred method of charge compensation even when extrapolating to laboratory fictive temperatures, indicating that triclusters are not a byproduct of simulation timescales.

2.
Chem Rev ; 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35511603

RESUMEN

Atomic structure dictates the performance of all materials systems; the characteristic of disordered materials is the significance of spatial and temporal fluctuations on composition-structure-property-performance relationships. Glass has a disordered atomic arrangement, which induces localized distributions in physical properties that are conventionally defined by average values. Quantifying these statistical distributions (including variances, fluctuations, and heterogeneities) is necessary to describe the complexity of glass-forming systems. Only recently have rigorous theories been developed to predict heterogeneities to manipulate and optimize glass properties. This article provides a comprehensive review of experimental, computational, and theoretical approaches to characterize and demonstrate the effects of short-, medium-, and long-range statistical fluctuations on physical properties (e.g., thermodynamic, kinetic, mechanical, and optical) and processes (e.g., relaxation, crystallization, and phase separation), focusing primarily on commercially relevant oxide glasses. Rigorous investigations of fluctuations enable researchers to improve the fundamental understanding of the chemistry and physics governing glass-forming systems and optimize structure-property-performance relationships for next-generation technological applications of glass, including damage-resistant electronic displays, safer pharmaceutical vials to store and transport vaccines, and lower-attenuation fiber optics. We invite the reader to join us in exploring what can be discovered by going beyond the average.

3.
ACS Nano ; 15(6): 9796-9807, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34061497

RESUMEN

We investigate a laser direct-write method to synthesize and deposit metastable, mixed transition metal oxides and evaluate their performance as oxygen evolution reaction catalysts. This laser processing method enabled the rapid synthesis of diverse heterogeneous alloy and oxide catalysts directly from cost-effective solution precursors, including catalysts with a high density of nanocrystalline metal alloy inclusions within an amorphous oxide matrix. The nanoscale heterogeneous structures of the synthesized catalysts were consistent with reactive force-field Monte Carlo calculations. By evaluating the impact of varying transition metal oxide composition ratios, we created a stable Fe0.63Co0.19Ni0.18Ox/C catalyst with a Tafel slope of 38.23 mV dec-1 and overpotential of 247 mV, a performance similar to that of IrO2. Synthesized Fe0.63Co0.19Ni0.18Ox/C and Fe0.14Co0.46Ni0.40Ox/C catalysts were experimentally compared in terms of catalytic performance and structural characteristics to determine that higher iron content and a less crystalline structure in the secondary matrix decrease the charge transfer resistance and thus is beneficial for electrocatalytic activity. This conclusion is supported by density-functional theory calculations showing distorted active sites in ternary metal catalysts are key for lowering overpotentials for the oxygen evolution reaction.

4.
J Phys Chem B ; 124(6): 1099-1103, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-31955573

RESUMEN

In low-viscosity liquids, diffusion is inversely related to viscosity via the Stokes-Einstein relation. However, the Stokes-Einstein relation breaks down near the glass transition as the supercooled liquid transitions into the non-ergodic glassy state. The nonequilibrium viscosity of glass is governed by the liquid-state viscous properties, namely, the glass transition temperature and the fragility. Here, a model is derived to predict the ionic diffusivity of a glass from its nonequilibrium viscosity, accounting for the compositional dependence of the glass. The free energy activation barrier for diffusion is related to the activation enthalpy for viscous flow using the Mauro-Allan-Potuzak model of nonequilibrium viscosity [Mauro, J. C.; Allan, D. C.; Potuzak, M. Nonequilibrium Viscosity of Glass. Phys. Rev. B 2009, 80, 094204]. These insights allow for accurate prediction of activation barriers for diffusion of alkali ions. The model is supported by experimental results and nudged-elastic band calculations applied to sodium silicate and borate glasses.

5.
J Phys Chem B ; 123(34): 7482-7489, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31369267

RESUMEN

The mixed alkali effect, the deviation from expected linear property changes when alkali ions are mixed in a glass, remains a point of contention in the glass community. While several earlier models have been proposed to explain mixed alkali effects on ionic motion, models based on or containing discussion of structural aspects of mixed-alkali glasses remain rare by comparison. However, the transition-range viscosity depression effect is many orders in magnitude for mixed-alkali glasses, and the original observation of the effect (then known as the Thermometer Effect) concerned the highly anomalous temperature dependence of stress and structural relaxation time constants. With this in mind, a new structural model based on topological constraint theory is proposed herein which elucidates the origin of the mixed alkali effect as a consequence of network strain due to differing cation radii. Discussion of literature models and data alongside new molecular dynamics simulations and experimental data are presented in support of the model, with good agreement.

6.
J Phys Chem Lett ; 10(14): 3955-3960, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31241951

RESUMEN

Glass surfaces are of considerable interest due to their disproportionately large influence on the performance of glass articles in many applications. However, the behavior of glass surfaces has proven difficult to model and predict due to their complex structure and interactions with the environment. Here, the effects of glass network topology on the surface reactivity of glasses have been investigated using reactive and nonreactive force field-based molecular dynamics simulations as well as density functional theory. A topological constraint-based description for surface reactivity is developed, allowing for improved understanding of the physical and chemical origins of surface reactivity. Results show evidence for the existence of a chemically stable intermediate phase on the surface of the glass where the glass network is mechanically isostatic.

7.
J Phys Chem Lett ; 9(24): 6985-6990, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30484656

RESUMEN

A topological constraint model is developed to predict the compositional scaling of glass transition temperature ( Tg) in a metal-organic framework glass, agZIF-62 [Zn(Im2- xbIm x)]. A hierarchy of bond constraints is established using a combination of experimental results and molecular dynamic simulations with ReaxFF. The model can explain the topological origin of Tg as a function of the benzimidazolate concentration with an error of 3.5 K. The model is further extended to account for the effect of 5-methylbenzimidazolate, enabling calculation of a ternary diagram of Tg with a mixture of three organic ligands in an as-yet unsynthesized, hypothetical framework. We show that topological constraint theory is an effective tool for understanding the properties of metal-organic framework glasses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA