Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (192)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847398

RESUMEN

The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool is a fast, freely available, online screening application that allows researchers and regulators to extrapolate toxicity information across species. For biological targets in model systems such as human cells, mice, rats, and zebrafish, toxicity data are available for a variety of chemicals. Through the evaluation of protein target conservation, this tool can be used to extrapolate data generated from such model systems to thousands of other species lacking toxicity data, yielding predictions of relative intrinsic chemical susceptibility. The latest releases of the tool (versions 2.0-6.1) have incorporated new features that allow for the rapid synthesis, interpretation, and use of the data for publication plus presentation-quality graphics. Among these features are customizable data visualizations and a comprehensive summary report designed to summarize SeqAPASS data for ease of interpretation. This paper describes the protocol to guide users through submitting jobs, navigating the various levels of protein sequence comparisons, and interpreting and displaying the resulting data. New features of SeqAPASS v2.0-6.0 are highlighted. Furthermore, two use-cases focused on transthyretin and opioid receptor protein conservation using this tool are described. Finally, SeqAPASS' strengths and limitations are discussed to define the domain of applicability for the tool and highlight different applications for cross-species extrapolation.


Asunto(s)
Proteínas , Pez Cebra , Ratones , Ratas , Animales , Humanos , Alineación de Secuencia , Secuencia de Aminoácidos
2.
Environ Toxicol Chem ; 42(2): 463-474, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36524855

RESUMEN

Computational screening for potentially bioactive molecules using advanced molecular modeling approaches including molecular docking and molecular dynamic simulation is mainstream in certain fields like drug discovery. Significant advances in computationally predicting protein structures from sequence information have also expanded the availability of structures for nonmodel species. Therefore, the objective of the present study was to develop an analysis pipeline to harness the power of these bioinformatics approaches for cross-species extrapolation for evaluating chemical safety. The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool compares protein-sequence similarity across species for conservation of known chemical targets, providing an initial line of evidence for extrapolation of toxicity knowledge. However, with the development of structural models from tools like the Iterative Threading ASSEmbly Refinement (ITASSER), analyses of protein structural conservation can be included to add further lines of evidence and generate protein models across species. Models generated through such a pipeline could then be used for advanced molecular modeling approaches in the context of species extrapolation. Two case examples illustrating this pipeline from SeqAPASS sequences to I-TASSER-generated protein structures were created for human liver fatty acid-binding protein (LFABP) and androgen receptor (AR). Ninety-nine LFABP and 268 AR protein models representing diverse species were generated and analyzed for conservation using template modeling (TM)-align. The results from the structural comparisons were in line with the sequence-based SeqAPASS workflow, adding further evidence of LFABL and AR conservation across vertebrate species. The present study lays the foundation for expanding the capabilities of the web-based SeqAPASS tool to include structural comparisons for species extrapolation, facilitating more rapid and efficient toxicological assessments among species with limited or no existing toxicity data. Environ Toxicol Chem 2023;42:463-474. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Seguridad Química , Humanos , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Proteínas/química , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA