Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Geroscience ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509416

RESUMEN

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent subcutaneous bioidentical E2 chronic treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p = 1.6 × 10-51) and upregulation (p = 3.8 × 10-3) of UBE2M across both brain regions provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p = 1.9 × 10-4; interaction p = 3.5 × 10-2) of LTBR in the PFC provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step toward understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.

2.
Clin Epigenetics ; 15(1): 191, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093359

RESUMEN

BACKGROUND: In 1990, David Barker proposed that prenatal nutrition is directly linked to adult cardiovascular disease. Since then, the relationship between adult cardiovascular risk, metabolic syndrome and birth weight has been widely documented. Here, we used the TruSeq Methyl Capture EPIC platform to compare the methylation patterns in cord blood from large for gestational age (LGA) vs adequate for gestational age (AGA) newborns from the LARGAN cohort. RESULTS: We found 1672 differentially methylated CpGs (DMCs) with a nominal p < 0.05 and 48 differentially methylated regions (DMRs) with a corrected p < 0.05 between the LGA and AGA groups. A systems biology approach identified several biological processes significantly enriched with genes in association with DMCs with FDR < 0.05, including regulation of transcription, regulation of epinephrine secretion, norepinephrine biosynthesis, receptor transactivation, forebrain regionalization and several terms related to kidney and cardiovascular development. Gene ontology analysis of the genes in association with the 48 DMRs identified several significantly enriched biological processes related to kidney development, including mesonephric duct development and nephron tubule development. Furthermore, our dataset identified several DNA methylation markers enriched in gene networks involved in biological pathways and rare diseases of the cardiovascular system, kidneys, and metabolism. CONCLUSIONS: Our study identified several DMCs/DMRs in association with fetal overgrowth. The use of cord blood as a material for the identification of DNA methylation biomarkers gives us the possibility to perform follow-up studies on the same patients as they grow. These studies will not only help us understand how the methylome responds to continuum postnatal growth but also link early alterations of the DNA methylome with later clinical markers of growth and metabolic fitness.


Asunto(s)
Metilación de ADN , Diabetes Gestacional , Embarazo , Adulto , Femenino , Humanos , Recién Nacido , Edad Gestacional , Diabetes Gestacional/genética , Macrosomía Fetal/genética
3.
Transl Psychiatry ; 13(1): 364, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012158

RESUMEN

The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol-dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms, including alternative promoters in KCNN3, that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol-dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in the expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy-drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to potentially impact the firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.


Asunto(s)
Alcoholismo , Epigénesis Genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Ratones , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Núcleo Accumbens , Haplorrinos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
4.
Res Sq ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37790552

RESUMEN

The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms including alternative promoters in KCNN3 that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to impact firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.

5.
bioRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38187564

RESUMEN

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent E2 treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p=1.6×10-51) and upregulation (p=3.8×10-3) of UBE2M across both brain regions, provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p=1.9×10-4; interaction p=3.5×10-2) of LTBR in the PFC, provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step towards understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.

6.
Alcohol ; 60: 103-113, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27866807

RESUMEN

Alcohol-use disorders encompass a range of drinking levels and behaviors, including low, binge, and heavy drinking. In this regard, investigating the neural state of individuals who chronically self-administer lower doses of alcohol may provide insight into mechanisms that prevent the escalation of alcohol use. DNA methylation is one of the epigenetic mechanisms that stabilizes adaptations in gene expression and has been associated with alcohol use. Thus, we investigated DNA methylation, gene expression, and the predicted neural effects in the nucleus accumbens core (NAcc) of male rhesus macaques categorized as "low" or "binge" drinkers, compared to "alcohol-naïve" and "heavy" drinkers based on drinking patterns during a 12-month alcohol self-administration protocol. Using genome-wide CpG-rich region enrichment and bisulfite sequencing, the methylation levels of 2.6 million CpGs were compared between alcohol-naïve (AN), low/binge (L/BD), and heavy/very heavy (H/VHD) drinking subjects (n = 24). Through regional clustering analysis, we identified nine significant differential methylation regions (DMRs) that specifically distinguished ANs and L/BDs, and then compared those DMRs among H/VHDs. The DMRs mapped to genes encoding ion channels, receptors, cell adhesion molecules, and cAMP, NF-κß and Wnt signaling pathway proteins. Two of the DMRs, linked to PDE10A and PKD2L2, were also differentially methylated in H/VHDs, suggesting an alcohol-dose independent effect. However, two other DMRs, linked to the CCBE1 and FZD5 genes, had L/BD methylation levels that significantly differed from both ANs and H/VHDs. The remaining five DMRs also differentiated L/BDs and ANs. However, H/VHDs methylation levels were not distinguishable from either of the two groups. Functional validation of two DMRs, linked to FZD5 and PDE10A, support their role in regulating gene expression and exon usage, respectively. In summary, the findings demonstrate that L/BD is associated with unique DNA methylation signatures in the primate NAcc, and that the methylation signatures identify synaptic genes that may play a role in preventing the escalation of alcohol use.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Consumo Excesivo de Bebidas Alcohólicas/genética , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Etanol/toxicidad , Núcleo Accumbens/efectos de los fármacos , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Análisis por Conglomerados , Islas de CpG , Modelos Animales de Enfermedad , Exones , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Macaca mulatta , Masculino , Núcleo Accumbens/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética
7.
Neuropharmacology ; 96(Pt B): 263-73, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25661700

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Islas de CpG , Humanos/genética , Macaca mulatta/genética , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Polimorfismo de Nucleótido Simple , Conformación Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Receptores Nicotínicos/química , Autoadministración , Especificidad de la Especie , Homología Estructural de Proteína , Tabaquismo/genética
8.
Genome Biol ; 15(12): 565, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25518852

RESUMEN

BACKGROUND: Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. RESULTS: Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. CONCLUSIONS: Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered 'natural knockouts' that may become invaluable model organisms for several human diseases.


Asunto(s)
Proteínas Aviares/genética , Aves/clasificación , Aves/genética , Genómica/métodos , Animales , Cromosomas/genética , Biología Computacional/métodos , Evolución Molecular , Eliminación de Gen , Humanos , Lagartos/genética , Familia de Multigenes , Filogenia , Sintenía
9.
PLoS One ; 9(2): e90035, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587203

RESUMEN

Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum species complex is controversial, with the number of putative species being the subject of debate. Accurate phylogenetic knowledge of this group is highly desirable as it may ultimately reveal genetic differences between species. For this study, nematodes belonging to the X. americanum species complex, including potentially mixed species populations, were collected from 12 geographically disparate locations across the U.S. from different crops and in varying association with nepoviruses. At least four individuals from each population were analyzed. A portion of the 18S nuclear ribosomal DNA (rDNA) gene was sequenced for all individuals while the internal transcribed spacer region 1 (ITS1) of rDNA was cloned and 2 to 6 clones per individual were sequenced. Mitochondrial genomes for numerous individuals were sequenced in parallel using high-throughput DNA sequencing (HTS) technology. Phylogenetic analysis of the 18S rDNA revealed virtually identical sequences across all populations. Analysis of ITS1 rDNA sequences revealed several well-supported clades, with some degree of congruence with geographic location and viral transmission, but also numerous presumably paralogous sequences that failed to form clades with other sequences from the same population. Analysis of mitochondrial DNA (mtDNA) indicated the presence of three distinct monophyletic clades of X. americanum species complex nematodes. Two clades contained nematodes found in association with nepovirus and the third contained divergent mtDNA sequences from three nematode populations from the western U.S. where nepovirus was absent. The inherent heterogeneity in ITS1 rDNA sequence data and lack of informative sites in 18S rDNA analysis suggests that mtDNA may be more useful in sorting out the taxonomic confusion of the X. americanum species complex.


Asunto(s)
Genoma Mitocondrial , Nematodos/clasificación , Nematodos/genética , Filogenia , ARN Ribosómico , Animales , ADN Mitocondrial , ADN Espaciador Ribosómico , Orden Génico , Datos de Secuencia Molecular , ARN Ribosómico 18S/genética
10.
BMC Plant Biol ; 13: 92, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23799904

RESUMEN

BACKGROUND: Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation. RESULTS: We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes. CONCLUSIONS: DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements.


Asunto(s)
Desdiferenciación Celular , Populus/citología , Populus/genética , Técnicas de Cultivo de Célula , Células Cultivadas , Citosina/metabolismo , Metilación de ADN , Epigenómica , Populus/fisiología , Transformación Genética
11.
G3 (Bethesda) ; 3(1): 41-63, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23316438

RESUMEN

Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Evolución Molecular , Variación Genética , Genoma Fúngico/genética , Micotoxinas/genética , Triticum/microbiología , Secuencia de Bases , Mapeo Cromosómico , Análisis Citogenético , Cartilla de ADN/genética , Elementos Transponibles de ADN/genética , Duplicación de Gen/genética , Genómica , Funciones de Verosimilitud , Modelos Genéticos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
12.
New Phytol ; 196(3): 713-725, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22861491

RESUMEN

• Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype-genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination. • We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29,213 single-nucleotide polymorphisms. • Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r(2) dropping below 0.2 within 3-6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N(e) ≈ 4000-6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features. • Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed.


Asunto(s)
Genoma de Planta , Genómica/métodos , Desequilibrio de Ligamiento , Populus/genética , Metilación de ADN , ADN de Plantas/genética , Evolución Molecular , Frecuencia de los Genes , Estudios de Asociación Genética/métodos , Flujo Genético , Técnicas de Genotipaje , Geografía , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Recombinación Genética , Selección Genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodos
13.
PLoS One ; 7(7): e40240, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792250

RESUMEN

Pyrenophora tritici-repentis (Ptr), a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs) necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA) and Ptr ToxB (ToxB), are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.


Asunto(s)
Ascomicetos/patogenicidad , Micotoxinas/farmacología , Enfermedades de las Plantas/genética , Triticum/genética , Triticum/microbiología , Muerte Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno/genética , Redes y Vías Metabólicas/efectos de los fármacos , Familia de Multigenes/efectos de los fármacos , Estrés Oxidativo/genética , Fotosíntesis/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
PLoS One ; 7(4): e35668, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22536421

RESUMEN

Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species.


Asunto(s)
Polimorfismo de Nucleótido Simple , Prunus/genética , Cruzamiento , Mapeo Cromosómico , Cromosomas de las Plantas , Frecuencia de los Genes , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Cooperación Internacional , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN
15.
Genome Biol Evol ; 4(4): 513-22, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22436997

RESUMEN

Variation among lineages in the mutation process has the potential to impact diverse biological processes ranging from susceptibilities to genetic disease to the mode and tempo of molecular evolution. The combination of high-throughput DNA sequencing (HTS) with mutation-accumulation (MA) experiments has provided a powerful approach to genome-wide mutation analysis, though insights into mutational variation have been limited by the vast evolutionary distances among the few species analyzed. We performed a HTS analysis of MA lines derived from four Caenorhabditis nematode natural genotypes: C. elegans N2 and PB306 and C. briggsae HK104 and PB800. Total mutation rates did not differ among the four sets of MA lines. A mutational bias toward G:C→A:T transitions and G:C→T:A transversions was observed in all four sets of MA lines. Chromosome-specific rates were mostly stable, though there was some evidence for a slightly elevated X chromosome mutation rate in PB306. Rates were homogeneous among functional coding sequence types and across autosomal cores, arms, and tips. Mutation spectra were similar among the four MA line sets but differed significantly when compared with patterns of natural base-substitution polymorphism for 13/14 comparisons performed. Our findings show that base-substitution mutation processes in these closely related animal lineages are mostly stable but differ from natural polymorphism patterns in these two species.


Asunto(s)
Caenorhabditis elegans/genética , Variación Genética , Mutación Puntual , Animales , Caenorhabditis elegans/clasificación , Análisis Mutacional de ADN , Evolución Molecular , Genoma de los Helmintos , Tasa de Mutación , Filogenia
16.
PLoS One ; 7(2): e31745, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363718

RESUMEN

As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple.


Asunto(s)
Genoma de Planta/genética , Malus/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Cruzamiento , Segregación Cromosómica/genética , Ligamiento Genético , Haplotipos/genética , Cooperación Internacional , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Flujo de Trabajo
17.
BMC Genomics ; 13: 27, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22251412

RESUMEN

BACKGROUND: DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. RESULTS: We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. CONCLUSIONS: We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.


Asunto(s)
Cromosomas de las Plantas/genética , Citosina/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Populus/genética , Epigénesis Genética , Populus/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia
18.
PLoS One ; 7(12): e48305, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284615

RESUMEN

High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb) of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome) and P. fruticosa (fruticosa subgenome). Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269) and sour (n = 330) cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery, genome structure investigation, and genetic diversity assessment in this diploid-tetraploid crop group.


Asunto(s)
Diploidia , Genoma de Planta/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Prunus/genética , Cruzamiento , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
19.
PLoS One ; 6(10): e25279, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21998647

RESUMEN

GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq) data for differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM)-compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-counter also includes three different methods for assessing differentially expressed features for enriched gene ontology (GO) terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small sample sizes and high variability in gene counts.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN , Arabidopsis/genética , Arabidopsis/inmunología , Benchmarking , Secuencia Conservada , Interpretación Estadística de Datos , Bases de Datos Genéticas , Genómica , Análisis de Secuencia por Matrices de Oligonucleótidos
20.
Nat Genet ; 43(2): 109-16, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21186353

RESUMEN

The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.


Asunto(s)
Fragaria/genética , Genoma de Planta , Algoritmos , Cloroplastos/genética , Mapeo Cromosómico , Perfilación de la Expresión Génica , Genes de Plantas , Ligamiento Genético , Hibridación Fluorescente in Situ , Funciones de Verosimilitud , Modelos Genéticos , Filogenia , Secuencias Repetidas Terminales , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA