Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 4(39)2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541031

RESUMEN

Immune evasion in the tumor microenvironment (TME) is a crucial barrier for effective cancer therapy, and plasticity of innate immune cells may contribute to failures of targeted immunotherapies. Here, we show that rivaroxaban, a direct inhibitor of activated coagulation factor X (FX), promotes antitumor immunity by enhancing infiltration of dendritic cells and cytotoxic T cells at the tumor site. Profiling FX expression in the TME identifies monocytes and macrophages as crucial sources of extravascular FX. By generating mice with immune cells lacking the ability to produce FX, we show that myeloid cell-derived FX plays a pivotal role in promoting tumor immune evasion. In mouse models of cancer, we report that the efficacy of rivaroxaban is comparable with anti-programmed cell death ligand 1 (PD-L1) therapy and that rivaroxaban synergizes with anti-PD-L1 in improving antitumor immunity. Mechanistically, we demonstrate that FXa promotes immune evasion by signaling through protease-activated receptor 2 and that rivaroxaban specifically targets this cell-autonomous signaling pathway to reprogram tumor-associated macrophages. Collectively, our results have uncovered the importance of FX produced in the TME as a regulator of immune cell activation and suggest translational potential of direct oral anticoagulants to remove persisting roadblocks for immunotherapy and provide extravascular benefits in other diseases.


Asunto(s)
Factor X/inmunología , Neoplasias Mamarias Animales/inmunología , Células Mieloides/inmunología , Animales , Femenino , Humanos , Inmunoterapia , Neoplasias Mamarias Animales/terapia , Ratones , Ratones Endogámicos C57BL
2.
Blood ; 131(19): 2161-2172, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29439952

RESUMEN

Oxidative stress and inflammation of the vessel wall contribute to prothrombotic states. The antioxidative protein paraoxonase-2 (PON2) shows reduced expression in human atherosclerotic plaques and endothelial cells in particular. Supporting a direct role for PON2 in cardiovascular diseases, Pon2 deficiency in mice promotes atherogenesis through incompletely understood mechanisms. Here, we show that deregulated redox regulation in Pon2 deficiency causes vascular inflammation and abnormalities in blood coagulation. In unchallenged Pon2-/- mice, we find increased oxidative stress and endothelial dysfunction. Bone marrow transplantation experiments and studies with endothelial cells provide evidence that increased inflammation, indicated by circulating interleukin-6 levels, originates from Pon2 deficiency in the vasculature. Isolated endothelial cells from Pon2-/- mice display increased tissue factor (TF) activity in vitro. Coagulation times were shortened and platelet procoagulant activity increased in Pon2-/- mice relative to wild-type controls. Coagulation abnormalities of Pon2-/- mice were normalized by anti-TF treatment, demonstrating directly that TF increases coagulation. PON2 reexpression in endothelial cells by conditional reversal of the knockout Pon2 cassette, restoration in the vessel wall using bone marrow chimeras, or treatment with the antioxidant N-acetylcysteine normalized the procoagulant state. These experiments delineate a PON2 redox-dependent mechanism that regulates endothelial cell TF activity and prevents systemic coagulation activation and inflammation.


Asunto(s)
Arildialquilfosfatasa/genética , Coagulación Sanguínea/genética , Células Endoteliales/metabolismo , Tromboplastina/metabolismo , Animales , Arildialquilfosfatasa/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Oxidación-Reducción , Estrés Oxidativo
3.
Oncotarget ; 7(32): 51082-51095, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27322774

RESUMEN

Aberrant Wnt signaling and control of anti-apoptotic mechanisms are pivotal features in different types of cancer to undergo cell death programs. The intracellular human enzyme Paraoxonase-2 (PON2) is known to have anti-apoptotic properties in leukemia and oral squamous cell cancer (OSCC) cells. However, the distinct regulating pathways are poorly understood. First, we present a so far unknown regulation of PON2 protein expression through the Wnt/GSK3ß/ß-catenin pathway in leukemia and OSCC cells. This was confirmed via in silico analysis, promoter reporter studies and treatment of multiple cell lines (K562, SCC-4, PCI-13) with different Wnt ligands/inhibitors in vitro. Ex vivo analysis of OSCC patients revealed a correlation between PON2 and ß-catenin expression in tumor tissue. Higher PON2 expression in OSCC is associated with relapse independently of treatment (e.g. surgery/radio-/chemotherapy). These results emphasize the clinical impact of the newly described regulation of PON2 through Wnt/GSK3ß/ß-catenin. More importantly, the study revealed the fundamental finding of an overall Wnt/GSK3ß/ß-catenin dependent regulation of PON2 in different cancers, which was confirmed by systematic and multimethodological approaches. Thus, the herein presented mechanistic insight contributes to a better understanding of tumor specific escape from cell death strategies and suggests PON2 as a new potential biomarker for therapy resistance or as a prognostic tumor marker.


Asunto(s)
Arildialquilfosfatasa/genética , Carcinoma de Células Escamosas/genética , Neoplasias de la Boca/genética , Tolerancia a Radiación/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Apoptosis/genética , Apoptosis/efectos de la radiación , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/radioterapia , Proliferación Celular/genética , Proliferación Celular/efectos de la radiación , Células Cultivadas , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células K562 , Neoplasias de la Boca/radioterapia , Vía de Señalización Wnt/fisiología
4.
Infect Immun ; 83(9): 3369-80, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26056385

RESUMEN

Pseudomonas aeruginosa produces N-(3-oxo-dodecanoyl)-L-homoserine lactone (3OC12), a crucial signaling molecule that elicits diverse biological responses in host cells thought to subvert immune defenses. The mechanism mediating many of these responses remains unknown. The intracellular lactonase paraoxonase 2 (PON2) hydrolyzes and inactivates 3OC12 and is therefore considered a component of host cells that attenuates 3OC12-mediated responses. Here, we demonstrate in cell lines and in primary human bronchial epithelial cells that 3OC12 is rapidly hydrolyzed intracellularly by PON2 to 3OC12 acid, which becomes trapped and accumulates within the cells. Subcellularly, 3OC12 acid accumulated within the mitochondria, a compartment where PON2 is localized. Treatment with 3OC12 caused a rapid PON2-dependent cytosolic and mitochondrial pH decrease, calcium release, and phosphorylation of stress signaling kinases. The results indicate a novel, PON2-dependent intracellular acidification mechanism by which 3OC12 can mediate its biological effects. Thus, PON2 is a central regulator of host cell responses to 3OC12, acting to decrease the availability of 3OC12 for receptor-mediated effects and acting to promote effects, such as calcium release and stress signaling, via intracellular acidification.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Homoserina/análogos & derivados , Interacciones Huésped-Parásitos/fisiología , Lactonas/metabolismo , Infecciones por Pseudomonas/metabolismo , Western Blotting , Línea Celular , Cromatografía Líquida de Alta Presión , Homoserina/metabolismo , Humanos , Inmunoprecipitación , Microscopía Confocal , Pseudomonas aeruginosa , Percepción de Quorum/fisiología , Interferencia de ARN
5.
J Lipids ; 2012: 352857, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570791

RESUMEN

The pathogen Pseudomonas aeruginosa causes serious damage in immunocompromised patients by secretion of various virulence factors, among them the quorum sensing N-(3-oxododecanoyl)-L-homoserine lactone (3OC12) and the redox-active pyocyanin (PCN). Paraoxonase-2 (PON2) may protect against P. aeruginosa infections, as it efficiently inactivates 3OC12 and diminishes PCN-induced oxidative stress. This defense could be circumvented because 3OC12 mediates intracellular Ca(2+)-rise in host cells, which causes rapid inactivation and degradation of PON2. Importantly, we recently found that the PON2 paralogue PON3 prevents mitochondrial radical formation. Here we investigated its role as additional potential defense mechanism against P. aeruginosa infections. Our studies demonstrate that PON3 diminished PCN-induced oxidative stress. Moreover, it showed clear anti-inflammatory potential by protecting against NF-κB activation and IL-8 release. The latter similarly applied to PON2. Furthermore, we observed a Ca(2+)-mediated inactivation and degradation of PON3, again in accordance with previous findings for PON2. Our results suggest that the anti-oxidative and anti-inflammatory functions of PON2 and PON3 are an important part of our innate defense system against P. aeruginosa infections. Furthermore, we conclude that P. aeruginosa circumvents PON3 protection by the same pathway as for PON2. This may help identifying underlying mechanisms in order to sustain the protection afforded by these enzymes.

6.
J Biol Chem ; 285(32): 24398-403, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20530481

RESUMEN

The human enzyme paraoxonase-2 (PON2) has two functions, an enzymatic lactonase activity and the reduction of intracellular oxidative stress. As a lactonase, it dominantly hydrolyzes bacterial signaling molecule 3OC12 and may contribute to the defense against pathogenic Pseudomonas aeruginosa. By its anti-oxidative effect, PON2 reduces cellular oxidative damage and influences redox signaling, which promotes cell survival. This may be appreciated but also deleterious given that high PON2 levels reduce atherosclerosis but may stabilize tumor cells. Here we addressed the unknown mechanisms and linkage of PON2 enzymatic and anti-oxidative function. We demonstrate that PON2 indirectly but specifically reduced superoxide release from the inner mitochondrial membrane, irrespective whether resulting from complex I or complex III of the electron transport chain. PON2 left O(2)(-) dismutase activities and cytochrome c expression unaltered, and it did not oxidize O(2)(-) but rather prevented its formation, which implies that PON2 acts by modulating quinones. To analyze linkage to hydrolytic activity, we introduced several point mutations and show that residues His(114) and His(133) are essential for PON2 activity. Further, we mapped its glycosylation sites and provide evidence that glycosylation, but not a native polymorphism Ser/Cys(311), was critical to its activity. Importantly, none of these mutations altered the anti-oxidative/anti-apoptotic function of PON2, demonstrating unrelated activities of the same protein. Collectively, our study provides detailed mechanistic insight into the functions of PON2, which is important for its role in innate immunity, atherosclerosis, and cancer.


Asunto(s)
Apoptosis , Arildialquilfosfatasa/fisiología , Lactonas/metabolismo , Mitocondrias/metabolismo , Superóxidos/metabolismo , Antioxidantes/química , Arildialquilfosfatasa/química , Endotelio Vascular/citología , Glicosilación , Humanos , Modelos Biológicos , Estrés Oxidativo , Oxígeno/química , Pseudomonas aeruginosa/enzimología , Especies Reactivas de Oxígeno , Fracciones Subcelulares
7.
Biochem J ; 426(1): 73-83, 2010 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-19925453

RESUMEN

Two virulence factors produced by Pseudomonas aeruginosa are pyocyanin and N-(3-oxododecanoyl)-L-homoserine lactone (3OC12). Pyocyanin damages host cells by generating ROS (reactive oxygen species). 3OC12 is a quorum-sensing signalling molecule which regulates bacterial gene expression and modulates host immune responses. PON2 (paraoxonase-2) is an esterase that inactivates 3OC12 and potentially attenuates Ps. aeruginosa virulence. Because increased intracellular Ca2+ initiates the degradation of PON2 mRNA and protein and 3OC12 causes increases in cytosolic Ca2+, we hypothesized that 3OC12 would also down-regulate PON2. 3OC12 and the Ca2+ ionophore A23187 caused a rapid cytosolic Ca2+ influx and down-regulated PON2 mRNA, protein and hydrolytic activity in A549 and EA.hy 926 cells. The decrease in PON2 hydrolytic activity was much more extensive and rapid than decreases in protein, suggesting a rapid post-translational mechanism which blocks PON2's hydrolytic activity. The Ca2+ chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)] diminished the ability of 3OC12 to decrease PON2, demonstrating that the effects are mediated by Ca2+. PON2 also has antioxidative properties and we show that it protects cells from pyocyanin-induced oxidative stress. Knockdown of PON2 by transfecting cells with siRNA (small interfering RNA) rendered them more sensitive to, whereas overexpression of PON2 protected cells from, pyocyanin-induced ROS formation. Additionally, 3OC12 potentiated pyocyanin-induced ROS formation, presumably by inactivating PON2. These findings support a key role for PON2 in the defence against Ps. aeruginosa virulence, but also reveal a mechanism by which the bacterium may subvert the protection afforded by PON2.


Asunto(s)
4-Butirolactona/análogos & derivados , Arildialquilfosfatasa/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Homoserina/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacología , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacología , Arildialquilfosfatasa/genética , Transporte Biológico/efectos de los fármacos , Western Blotting , Calcimicina/farmacología , Calcio/metabolismo , Calcio/fisiología , Línea Celular , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Activación Enzimática , Homoserina/metabolismo , Homoserina/farmacología , Humanos , Percepción de Quorum/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/fisiología , Virulencia/genética
8.
Biochem J ; 416(3): 395-405, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18691157

RESUMEN

PON2 (paraoxonase-2) is a ubiquitously expressed antioxidative protein which is largely found in the ER (endoplasmic reticulum). Addressing the cytoprotective functions of PON2, we observed that PON2 overexpression provided significant resistance to ER-stress-induced caspase 3 activation when the ER stress was induced by interference with protein modification (by tunicamycin or dithiothreitol), but not when ER stress was induced by disturbance of Ca(2+) homoeostasis (by thapsigargin or A23187). When analysing the underlying molecular events, we found an activation of the PON2 promoter in response to all tested ER-stress-inducing stimuli. However, only tunicamycin and dithiothreitol resulted in increased PON2 mRNA and protein levels. In contrast, when ER stress was caused by thapsigargin or A23187, we observed a Ca(2+)-dependent active degradation of PON2 mRNA, elicited by its 5'-untranslated region. In addition, thapsigargin and A23187 also induced PON2 protein degradation by a Ca(2+)-dependent calpain-mediated mechanism. Thus we provide evidence that independent mechanisms mediate the degradation of PON2 mRNA and protein after disturbance of Ca(2+) homoeostasis. Furthermore, because Ca(2+)-disturbance induces ER stress, but abrogates the otherwise protective function of PON2 against ER-stress-induced apoptosis, we propose that the underlying cause of ER stress determines the efficacy of putative cellular defence mechanisms.


Asunto(s)
Apoptosis/fisiología , Arildialquilfosfatasa/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/fisiología , Homeostasis , Estrés Fisiológico , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Arildialquilfosfatasa/genética , Calcimicina/farmacología , Calpaína/metabolismo , Línea Celular , Ditiotreitol/farmacología , Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Humanos , Ionóforos/farmacología , Regiones Promotoras Genéticas , Estabilidad del ARN , Tapsigargina/farmacología , Tunicamicina/farmacología
9.
Circulation ; 115(15): 2055-64, 2007 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-17404154

RESUMEN

BACKGROUND: In the vascular system, elevated levels of reactive oxygen species (ROS) produce oxidative stress and predispose to the development of atherosclerosis. Therefore, it is important to understand the systems producing and those scavenging vascular ROS. Here, we analyzed the ROS-reducing capability of paraoxonase-2 (PON2) in different vascular cells and its involvement in the endoplasmic reticulum stress pathway known as the unfolded protein response. METHODS AND RESULTS: Quantitative real-time polymerase chain reaction and Western blotting revealed that PON2 is equally expressed in vascular cells and appears in 2 distinct glycosylated isoforms. By determining intracellular ROS, we show that overexpression of PON2 markedly reduced ROS, whereas its knockdown increased ROS levels significantly. Using microscopic and biochemical methods, we found PON2 mainly in the nuclear membrane and endoplasmic reticulum. Furthermore, PON2 expression was induced at both the promoter and protein levels by endoplasmic reticulum stress pathway unfolded protein response. This pathway may promote both apoptotic and survival mechanisms. Functionally, PON2 reduced unfolded protein response-accompanying oxidative stress and unfolded protein response-derived caspase activation. CONCLUSIONS: We suggest that PON2 represents an endogenous defense mechanism against vascular oxidative stress and unfolded protein response-induced cell death, thereby contributing to the prevention of atherosclerosis.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Caspasas/metabolismo , Retículo Endoplásmico/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Arildialquilfosfatasa/genética , Células Cultivadas , Vasos Coronarios/citología , Retículo Endoplásmico/enzimología , Células Endoteliales/citología , Activación Enzimática , Fibroblastos/citología , Técnicas de Transferencia de Gen , Humanos , Músculo Liso Vascular/citología , Membrana Nuclear/enzimología , Estrés Oxidativo , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA