Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 89: 129277, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37105490

RESUMEN

Inhibition of NF-κB inducing kinase (NIK) has been pursued as a promising therapeutic target for autoimmune disorders due to its highly regulated role in key steps of the NF-κB signaling pathway. Previously reported NIK inhibitors from our group were shown to be potent, selective, and efficacious, but had higher human dose projections than desirable for immunology indications. Herein we report the clearance-driven optimization of a NIK inhibitor guided by metabolite identification studies and structure-based drug design. This led to the identification of an azabicyclo[3.1.0]hexanone motif that attenuated in vitro and in vivo clearance while maintaining NIK potency and increasing selectivity over other kinases, resulting in a greater than ten-fold reduction in predicted human dose.


Asunto(s)
FN-kappa B , Transducción de Señal , Humanos , FN-kappa B/metabolismo , Semivida , Diseño de Fármacos
2.
Cytotechnology ; 68(5): 1813-25, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26847791

RESUMEN

In vitro cell culture models used to study epithelia and epithelial diseases would benefit from the recognition that organs and tissues function in a three-dimensional (3D) environment. This context is necessary for the development of cultures that more realistically resemble in vivo tissues/organs. Our aim was to establish and characterize biologically meaningful 3D models of epithelium. We engineered 3D epithelia cultures using a kidney epithelia cell line (MDCK) and spherical polymer scaffolds. These kidney epithelia were characterized by live microscopy, immunohistochemistry and transmission electron microscopy. Strikingly, the epithelial cells displayed increased physiological relevance; they were extensively polarized and developed a more differentiated phenotype. Using such a growth system allows for direct transmission and fluorescence imaging with few restrictions using wide-field, confocal and Light Sheet Fluorescence Microscopy. We also assessed the wider relevance of this 3D culturing technique with several epithelial cell lines. Finally, we established that these 3D micro-tissues can be used for infection as well as biochemical assays and to study important cellular processes such as epithelial mesenchymal transmission. This new biomimetic model could provide a broadly applicable 3D culture system to study epithelia and epithelia related disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA