Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 9: 78, 2010 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-20973967

RESUMEN

BACKGROUND: The type III secretion system (T3SS) is a molecular machine in gram negative bacteria that exports proteins through both membranes to the extracellular environment. It has been previously demonstrated that the T3SS encoded in Salmonella Pathogenicity Island 1 (SPI-1) can be harnessed to export recombinant proteins. Here, we demonstrate the secretion of a variety of unfolded spider silk proteins and use these data to quantify the constraints of this system with respect to the export of recombinant protein. RESULTS: To test how the timing and level of protein expression affects secretion, we designed a hybrid promoter that combines an IPTG-inducible system with a natural genetic circuit that controls effector expression in Salmonella (psicA). LacO operators are placed in various locations in the psicA promoter and the optimal induction occurs when a single operator is placed at the +5nt (234-fold) and a lower basal level of expression is achieved when a second operator is placed at -63nt to take advantage of DNA looping. Using this tool, we find that the secretion efficiency (protein secreted divided by total expressed) is constant as a function of total expressed. We also demonstrate that the secretion flux peaks at 8 hours. We then use whole gene DNA synthesis to construct codon optimized spider silk genes for full-length (3129 amino acids) Latrodectus hesperus dragline silk, Bombyx mori cocoon silk, and Nephila clavipes flagelliform silk and PCR is used to create eight truncations of these genes. These proteins are all unfolded polypeptides and they encompass a variety of length, charge, and amino acid compositions. We find those proteins fewer than 550 amino acids reliably secrete and the probability declines significantly after ~700 amino acids. There also is a charge optimum at -2.4, and secretion efficiency declines for very positively or negatively charged proteins. There is no significant correlation with hydrophobicity. CONCLUSIONS: We show that the natural system encoded in SPI-1 only produces high titers of secreted protein for 4-8 hours when the natural psicA promoter is used to drive expression. Secretion efficiency can be high, but declines for charged or large sequences. A quantitative characterization of these constraints will facilitate the effective use and engineering of this system.


Asunto(s)
Proteínas Recombinantes/metabolismo , Salmonella/metabolismo , Seda/química , Arañas/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Western Blotting , Islas Genómicas , Interacciones Hidrofóbicas e Hidrofílicas , Represoras Lac/genética , Represoras Lac/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes/análisis , Salmonella/genética , Seda/genética , Seda/metabolismo , Espectrometría de Fluorescencia
2.
Mol Syst Biol ; 5: 309, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19756048

RESUMEN

The type III secretion system (T3SS) exports proteins from the cytoplasm, through both the inner and outer membranes, to the external environment. Here, a system is constructed to harness the T3SS encoded within Salmonella Pathogeneity Island 1 to export proteins of biotechnological interest. The system is composed of an operon containing the target protein fused to an N-terminal secretion tag and its cognate chaperone. Transcription is controlled by a genetic circuit that only turns on when the cell is actively secreting protein. The system is refined using a small human protein (DH domain) and demonstrated by exporting three silk monomers (ADF-1, -2, and -3), representative of different types of spider silk. Synthetic genes encoding silk monomers were designed to enhance genetic stability and codon usage, constructed by automated DNA synthesis, and cloned into the secretion control system. Secretion rates up to 1.8 mg l(-1) h(-1) are demonstrated with up to 14% of expressed protein secreted. This work introduces new parts to control protein secretion in Gram-negative bacteria, which will be broadly applicable to problems in biotechnology.


Asunto(s)
Fibroínas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Salmonella/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fibroínas/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Ingeniería de Proteínas/métodos , Transporte de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Salmonella/genética , Salmonella/metabolismo , Alineación de Secuencia , Transducción de Señal , Arañas/genética
3.
J Am Chem Soc ; 131(18): 6508-15, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19378995

RESUMEN

Methyl halides are used as agricultural fumigants and are precursor molecules that can be catalytically converted to chemicals and fuels. Plants and microorganisms naturally produce methyl halides, but these organisms produce very low yields or are not amenable to industrial production. A single methyl halide transferase (MHT) enzyme transfers the methyl group from the ubiquitous metabolite S-adenoyl methionine (SAM) to a halide ion. Using a synthetic metagenomic approach, we chemically synthesized all 89 putative MHT genes from plants, fungi, bacteria, and unidentified organisms present in the NCBI sequence database. The set was screened in Escherichia coli to identify the rates of CH(3)Cl, CH(3)Br, and CH(3)I production, with 56% of the library active on chloride, 85% on bromide, and 69% on iodide. Expression of the highest activity MHT and subsequent engineering in Saccharomyces cerevisiae results in productivity of 190 mg/L-h from glucose and sucrose. Using a symbiotic co-culture of the engineered yeast and the cellulolytic bacterium Actinotalea fermentans, we are able to achieve methyl halide production from unprocessed switchgrass (Panicum virgatum), corn stover, sugar cane bagasse, and poplar (Populus sp.). These results demonstrate the potential of producing methyl halides from non-food agricultural resources.


Asunto(s)
Bacterias/metabolismo , Ingeniería Genética , Hidrocarburos Halogenados/síntesis química , Metiltransferasas/metabolismo , Bacterias/enzimología , Biomasa , Industria Química/métodos , Hidrocarburos Bromados , Hidrocarburos Yodados , Cloruro de Metilo/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA