Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 10(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35228265

RESUMEN

BACKGROUND: Cytotoxic CD8+ T cell-based cancer immunotherapy has been extensively studied and applied, however, tumor cells are known to evade immune responses through the expression of immune checkpoints, such as programmed death ligand 1 (PD-L1). To overcome these issues, antibody-based immune checkpoint blockades (eg, antiprogrammed cell death 1 (anti-PD-1) and anti-PD-L1) have been revolutionized to improve immune responses. However, their therapeutic efficacy is limited to 15%-20% of the overall objective response rate. Moreover, PD-L1 is secreted from tumor cells, which can interrupt antibody-mediated immune reactions in the tumor microenvironment. METHODS: We developed poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) encapsulating PD-L1 small interfering RNA (siRNA) and PD-1 siRNA, as a delivery platform to silence immune checkpoints. This study used the TC-1 and EG7 tumor models to determine the potential therapeutic efficacy of the PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs, on administration twice per week for 4 weeks. Moreover, we observed combination effect of PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs and PLGA (antigen+adjuvant)-NPs using TC-1 and EG7 tumor-bearing mouse models. RESULTS: PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs boosted the host immune reaction by restoring CD8+ T cell function and promoting cytotoxic CD8+ T cell responses. We demonstrated that the combination of NP-based therapeutic vaccine and PLGA (siRNA)-NPs resulted in significant inhibition of tumor growth compared with the control and antibody-based treatments (p<0.001). The proposed system significantly inhibited tumor growth compared with the antibody-based approaches. CONCLUSION: Our findings suggest a potential combination approach for cancer immunotherapy using PLGA (PD-L1 siRNA+PD-1 siRNA)-NPs and PLGA (antigen+adjuvant)-NPs as novel immune checkpoint silencing agents.


Asunto(s)
Antineoplásicos , Nanopartículas , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Humanos , Ratones , Receptor de Muerte Celular Programada 1 , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico
2.
Acta Biomater ; 136: 508-518, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34626819

RESUMEN

Drug-based chemotherapy is associated with serious side effects. We developed a chemotherapeutic system comprising a chitosan hydrogel (CH-HG) containing gold cluster-labeled liposomal doxorubicin (DOX) (CH-HG-GLDOX) as an injectable drug depot system. CH-HG-GLDOX can be directly injected into tumor tissue without a surgical procedure, allowing this system to act as a reservoir for liposomal DOX. CH-HG-GLDOX enhanced the retention time of DOX in tumor tissue and controlled its release in response to near-infrared (NIR) irradiation, resulting in significant inhibition of tumor growth and reduced DOX-related toxicity. The combined effect of CH-HG-GLDOX and poly (D,L-lactide-co-glycolic acid) nanoparticle-based vaccines increased cytotoxic CD8+ T cell immunity, leading to enhanced synergistic therapeutic efficacy. CH-HG-GLDOX provides an advanced therapeutic approach for local drug delivery and controlled release of DOX, resulting in reduced toxicity. Here, we suggest a combination strategy for chemo- and immunotherapies, as well as in nanomedicine applications. STATEMENT OF SIGNIFICANCE: We developed an injectable hydrogel containing gold cluster-labeled liposomes for sustained drug release at the tumor site. Moreover, we demonstrated the combined therapeutic efficacy of a hydrogel system and a nanoparticle-based immunotherapeutic vaccine for melanoma cancer. Thus, we show a potential combination approach for chemo- and immunotherapies for cancer treatment.


Asunto(s)
Liposomas , Melanoma , Línea Celular Tumoral , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Hidrogeles
3.
Int J Nanomedicine ; 15: 8427-8436, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33149585

RESUMEN

BACKGROUND: Epithelial ovarian cancer (EOC) is a fatal gynecologic malignancy that is usually treated with chemotherapy after surgery. However, patients who receive chemotherapy experience severe side effects because of the inherent toxicity and high dose of chemotherapeutics. To overcome these issues, we suggest a combination therapeutic strategy using liposomes encapsulating linalool nanoemulsions (LN-NEs) and doxorubicin (DOX), a chemotherapeutic drug, to increase their synergistic antitumor efficacy and reduce the incidence of side effects from chemotherapeutics for EOC. METHODS: The physical properties of LN-NE-DOX-liposomes were characterized by light scattering with a particle size analyzer. Cell viability was determined by MTT assay. Therapeutic efficacy was evaluated in a mouse HeyA8 EOC tumor model of ovarian carcinoma. Additionally, biochemical toxicity was analyzed for levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and blood urea nitrogen (BUN) using BALB/c nude mice. RESULTS: The size of the liposomes encapsulating LN-NEs and DOX (LN-NE-DOX-liposomes) was 267.0 ± 4.6 nm, with a loading efficiency of 55.1 ± 3.1% and 27.2 ± 0.9% for linalool and DOX, respectively. Cell viability after treatment with LN-NE-DOX-liposomes was significantly decreased compared to that of cells treated with DOX liposomes, and apoptosis was significantly increased. Additionally, LN-NE-DOX-liposomes significantly inhibited HeyA8 EOC tumor growth compared to that of the control (p < 0.01) and DOX-liposome-treated groups (p < 0.05), while decreasing cell proliferation (Ki67) and microvessel density (CD31), and promoting apoptosis (caspase-3) compared to the control (p < 0.05). Moreover, the liposomal formulations induced no significant differences in biochemical toxicity (AST, ALT, and BUN) compared to healthy control mice, indicating that the liposomal formulations showed no overt toxicity in mice. CONCLUSION: This study demonstrates that the production of LN-NE-DOX-liposomes is a pivotal approach for EOC treatment, suggesting a novel combination therapeutic strategy.


Asunto(s)
Monoterpenos Acíclicos/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Doxorrubicina/análogos & derivados , Portadores de Fármacos/química , Monoterpenos Acíclicos/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Doxorrubicina/uso terapéutico , Emulsiones/química , Femenino , Humanos , Liposomas/química , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Tamaño de la Partícula , Polietilenglicoles/uso terapéutico , Resultado del Tratamiento
4.
J Biomed Nanotechnol ; 16(2): 201-211, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32252881

RESUMEN

A key issue in dendritic cell (DC)-based cancer immunotherapy is the effective delivery of tumor-specific antigens to DCs. To deliver antigens, non-viral vaccine system has been used in ex vivo manipulation. However, ex vivo manipulation is time-consuming, lacks quality control of DCs, and demonstrates low antigen delivery efficiency, which implicates that there are serious problems in therapeutic DC preparations. Therefore, we developed mannose (MN)-labeled poly(d, l-lactide-co-glycolide) (PLGA) nanoparticles (MN-PLGA-NPs) encapsulating tumor-specific antigens for targeted delivery to mannose receptors (MN-R) on DC surfaces without ex vivo manipulation. The MN-PLGA-NPs showed DC-selective delivery in tumor-bearing mice, leading to highly mature and activated DCs, which migrated to lymphoid organs, resulting in activation of cytotoxic CD8+ T cells. Additionally, MN-PLGA-NPs showed significant therapeutic efficacy in EG7 lymphoma tumorbearing mice. Our nano-platform technology can be used as a vaccine system to bypass ex vivo manipulation and enhance targeted delivery of tumor-specific antigens to DCs, which is well-suited for cancer immunotherapy.


Asunto(s)
Células Dendríticas , Nanopartículas , Neoplasias , Animales , Dioxanos , Inmunoterapia , Ácido Láctico , Manosa , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
5.
ACS Appl Bio Mater ; 2(6): 2481-2489, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35030704

RESUMEN

Dendritic cell (DC)-based cancer immunotherapies have been studied extensively. In cancer immunotherapy, the initial key step is the delivery of tumor-specific antigens, leading to the maturation and activation of DCs. To promote effective antigen delivery, liposome-based delivery systems for tumor-specific antigens have been investigated, and although promising, a triggered release of the antigen from the liposome is required to attain an optimum immune response. In this study, we developed CO2-bubble-generating thermosensitive liposomes (BG-TSLs) that encapsulate whole tumor cell lysates (TCLs). The release of the lysate from BG-TSLs can be triggered using near-infrared (NIR) irradiation. We also developed BG-TSLs able to encapsulate doxorubicin (DOX) for combination therapy. The DOX-BG-TSLs and TCL-BG-TSLs have a mean particle size of 114.17 ± 8.28 nm and 123.8 ± 10.2 nm and a surface charge of -22.56 ± 1.3 mV and -28.9 ± 0.8 mV, respectively. CO2 bubble generation within TCL-BG-TSLs and DOX-BG-TSLs by NIR irradiation led to the burst release of TCL or DOX. TCL release from TCL-BG-TSLs promoted dendritic cell maturation and activation, leading to the emergence of antigen-specific cytotoxic CD8+ T cells. The combination of TCL-BG-TSLs with DOX-BG-TSLs showed a significantly greater antitumor efficacy in B16F10 tumor-bearing mice compared to that seen in the control mice (P < 0.001). Taken together, our liposomal delivery system, combined with NIR irradiation, could enhance the therapeutic efficacy of cancer immunotherapies.

6.
Cancer Res ; 78(21): 6247-6256, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30115698

RESUMEN

Chemotherapy is commonly used in the treatment of ovarian cancer, yet most ovarian cancers harbor inherent resistance or develop acquired resistance. Therefore, novel therapeutic approaches to overcome chemoresistance are required. In this study, we developed a hyaluronic acid-labeled poly(d,l-lactide-co-glycolide) nanoparticle (HA-PLGA-NP) encapsulating both paclitaxel (PTX) and focal adhesion kinase (FAK) siRNA as a selective delivery system against chemoresistant ovarian cancer. The mean size and zeta potential of the HA-PLGA-NP were 220 nm and -7.3 mV, respectively. Incorporation efficiencies for PTX and FAK siRNA in the HA-PLGA-NPs were 77% and 85%, respectively. HA-PLGA-NP showed higher binding efficiency for CD44-positive tumor cells as compared with CD44-negative cells. HA-PLGA (PTX+FAK siRNA)-NP caused increased cytotoxicity and apoptosis in drug-resistant tumor cells. Treatment of human epithelial ovarian cancer tumor models HeyA8-MDR (P < 0.001) and SKOV3-TR (P < 0.001) with HA-PLGA (PTX+FAK siRNA)-NP resulted in significant inhibition of tumor growth. Moreover, in a drug-resistant, patient-derived xenograft (PDX) model, HA-PLGA (PTX+FAK siRNA)-NP significantly inhibited tumor growth compared with PTX alone (P < 0.002). Taken together, HA-PLGA-NP acts as an effective and selective delivery system for both the chemotherapeutic and the siRNA in order to overcome chemoresistance in ovarian carcinoma.Significance: These findings demonstrate the efficacy of a novel, selective, two-in-one delivery system to overcome chemoresistance in epithelial ovarian cancer. Cancer Res; 78(21); 6247-56. ©2018 AACR.


Asunto(s)
Carcinoma Epitelial de Ovario/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Receptores de Hialuranos/química , Nanopartículas/química , Paclitaxel/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , ARN Interferente Pequeño/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular , Portadores de Fármacos/química , Resistencia a Antineoplásicos , Femenino , Silenciador del Gen , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo
7.
Drug Deliv ; 25(1): 1394-1402, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29890852

RESUMEN

Angiogenesis plays an essential role in the growth and metastasis of tumor cells, and the modulation of angiogenesis can be an effective approach for cancer therapy. We focused on silencing the angiogenic gene PLXDC1 as an important factor for anti-angiogenesis tumor therapy. Herein, we developed PLXDC1 small interfering siRNA (siRNA)-incorporated chitosan nanoparticle (CH-NP/siRNA) coated with hyaluronic acid (HA) to target the CD44 receptor on tumor endothelial cells. This study aimed to improve targeted delivery and enhance therapeutic efficacy for tumor anti-angiogenesis. The HA-CH-NP/siRNA was 200 ± 10 nm in size with a zeta potential of 26.4 mV. The loading efficiency of siRNA to the HA-CH-NP/siRNA was up to 60%. The selective binding of HA-CH-NP/siRNA to CD44-positive tumor endothelial cells increased by 2.1-fold compared with that of the CD44 nontargeted CH-NP/siRNA. PLXDC1 silencing by the HA-CH-NP/siRNA significantly inhibited tumor growth in A2780 tumor-bearing mice compared with that in the control group (p < .01), and mRNA expression of PLXDC1 was significantly reduced in the HA-CH-NP/siRNA-treated group. Furthermore, treatment with HA-CH-NP/siRNA resulted in significant inhibition of cell proliferation (p < .001), reduced microvessel density (p < .001), and increased cell apoptosis (p < .001). This study demonstrates that HA-CH-NP/siRNA is a highly selective delivery platform for siRNA, and has broad potential to be used in anti-angiogenesis tumor therapy.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Quitosano/química , Células Endoteliales/efectos de los fármacos , Receptores de Hialuranos/genética , Nanopartículas/química , Proteínas de Neoplasias/genética , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , ARN Interferente Pequeño/administración & dosificación , Receptores de Superficie Celular/genética , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Femenino , Silenciador del Gen/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Hialurónico/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/administración & dosificación , Tamaño de la Partícula , ARN Mensajero/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA