RESUMEN
The Pantanal is the world's largest freshwater wetland, located in the geographical centre of South America. It is relatively well conserved, and features unique landscapes, ecosystems, and traditional cultural practices, shaped by the dynamic interaction of climatological, hydrological, geological, ecological, and anthropogenic factors. Its ecological integrity is increasingly threatened by human activities, particularly, in the wider catchment area, for example, deforestation, agricultural intensification, and construction of hydropower plants, with implications for local people's livelihoods. We present a synthesis of current literature on physical, ecological, and human dimensions of environmental change in the wetland, outline key research gaps, and discuss environmental management implications. The literature review suggests that better integration of insights from multiple disciplines is needed and that environmental management could be improved through a better grounding in traditional practices and local perspectives. We conclude with four recommendations: First, future environmental change research should build more strongly on the positive example of a small number of case studies where traditional and local knowledge of the environment was put into a dialogue with scientific knowledge and techniques. Second, we recommend a more explicit consideration of longer temporal scales (>10â¯years) in environmental change research, making use of oral and written histories, as well as palaeoecological techniques, to understand system responses to different magnitudes of human and climatic pressures, and ultimately, to inform future adaptation activities. Third, we suggest that enhanced stakeholder participation in conceiving and implementing research projects in the Pantanal would strengthen the practical relevance of research in addressing environmental management challenges, livelihood needs, and advocacy processes. Fourth, we call for a more systemic and integrative perspective on environmental education, which encompasses engagement activities between researchers, policy-makers, and citizens, to foster environmental awareness, scientific literacy, and public participation.
Asunto(s)
Monitoreo del Ambiente , Humedales , Agricultura , Biodiversidad , Brasil , Conservación de los Recursos Naturales , Ecosistema , Agua Dulce , Geografía , Hidrología , Participación de los InteresadosRESUMEN
The long-term response of ancient societies to climate change has been a matter of global debate. Until recently, the lack of integrative studies using archaeological, palaeoecological and palaeoclimatological data prevented an evaluation of the relationship between climate change, distinct subsistence strategies and cultural transformations across the largest rainforest of the world, Amazonia. Here we review the most relevant cultural changes seen in the archaeological record of six different regions within Greater Amazonia during late pre-Columbian times. We compare the chronology of those cultural transitions with high-resolution regional palaeoclimate proxies, showing that, while some societies faced major reorganization during periods of climate change, others were unaffected and even flourished. We propose that societies with intensive, specialized land-use systems were vulnerable to transient climate change. In contrast, land-use systems that relied primarily on polyculture agroforestry, resulting in the formation of enriched forests and fertile Amazonian dark earth in the long term, were more resilient to climate change.
Asunto(s)
Cambio Climático , Bosques , Arqueología , Brasil , Bosque LluviosoRESUMEN
The most carbon (C)-dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long-term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6-6.1 and ca. 4.9-3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland-forest swamp-peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8-1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts.
Asunto(s)
Carbono/química , Suelo , Humedales , Sequías , Perú , Ríos , Factores de TiempoRESUMEN
The development of agriculture is one of humankind's most pivotal achievements. Questions about plant domestication and the origins of agriculture have engaged scholars for well over a century, with implications for understanding its legacy on global subsistence strategies, plant distribution, population health and the global methane budget. Rice is one of the most important crops to be domesticated globally, with both Asia (Oryza sativa L.) and Africa (Oryza glaberrima Steud.) discussed as primary centres of domestication. However, until now the pre-Columbian domestication of rice in the Americas has not been documented. Here we document the domestication of Oryza sp. wild rice by the mid-Holocene residents of the Monte Castelo shell mound starting at approximately 4,000 cal. yr BP, evidenced by increasingly larger rice husk phytoliths. Our data provide evidence for the domestication of wild rice in a region of the Amazon that was also probably the cradle of domestication of other major crops such as cassava (Manihot esculenta), peanut (Arachis hypogaea) and chilli pepper (Capsicum sp.). These results underline the role of wetlands as prime habitats for plant domestication worldwide.
Asunto(s)
Domesticación , Oryza , Arqueología , Brasil , Oryza/anatomía & histologíaRESUMEN
There is considerable controversy over whether pre-Columbian (pre-A.D. 1492) Amazonia was largely "pristine" and sparsely populated by slash-and-burn agriculturists, or instead a densely populated, domesticated landscape, heavily altered by extensive deforestation and anthropogenic burning. The discovery of hundreds of large geometric earthworks beneath intact rainforest across southern Amazonia challenges its status as a pristine landscape, and has been assumed to indicate extensive pre-Columbian deforestation by large populations. We tested these assumptions using coupled local- and regional-scale paleoecological records to reconstruct land use on an earthwork site in northeast Bolivia within the context of regional, climate-driven biome changes. This approach revealed evidence for an alternative scenario of Amazonian land use, which did not necessitate labor-intensive rainforest clearance for earthwork construction. Instead, we show that the inhabitants exploited a naturally open savanna landscape that they maintained around their settlement despite the climatically driven rainforest expansion that began â¼2,000 y ago across the region. Earthwork construction and agriculture on terra firme landscapes currently occupied by the seasonal rainforests of southern Amazonia may therefore not have necessitated large-scale deforestation using stone tools. This finding implies far less labor--and potentially lower population density--than previously supposed. Our findings demonstrate that current debates over the magnitude and nature of pre-Columbian Amazonian land use, and its impact on global biogeochemical cycling, are potentially flawed because they do not consider this land use in the context of climate-driven forest-savanna biome shifts through the mid-to-late Holocene.