Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Npj Imaging ; 2(1)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939049

RESUMEN

In the field of optical imaging, the ability to image tumors at depth with high selectivity and specificity remains a challenge. Surface enhanced resonance Raman scattering (SERRS) nanoparticles (NPs) can be employed as image contrast agents to specifically target cells in vivo; however, this technique typically requires time-intensive point-by-point acquisition of Raman spectra. Here, we combine the use of "spatially offset Raman spectroscopy" (SORS) with that of SERRS in a technique known as "surface enhanced spatially offset resonance Raman spectroscopy" (SESORRS) to image deep-seated tumors in vivo. Additionally, by accounting for the laser spot size, we report an experimental approach for detecting both the bulk tumor, subsequent delineation of tumor margins at high speed, and the identification of a deeper secondary region of interest with fewer measurements than are typically applied. To enhance light collection efficiency, four modifications were made to a previously described custom-built SORS system. Specifically, the following parameters were increased: (i) the numerical aperture (NA) of the lens, from 0.2 to 0.34; (ii) the working distance of the probe, from 9 mm to 40 mm; (iii) the NA of the fiber, from 0.2 to 0.34; and (iv) the fiber diameter, from 100 µm to 400 µm. To calculate the sampling frequency, which refers to the number of data point spectra obtained for each image, we considered the laser spot size of the elliptical beam (6 × 4 mm). Using SERRS contrast agents, we performed in vivo SESORRS imaging on a GL261-Luc mouse model of glioblastoma at four distinct sampling frequencies: par-sampling frequency (12 data points collected), and over-frequency sampling by factors of 2 (35 data points collected), 5 (176 data points collected), and 10 (651 data points collected). In comparison to the previously reported SORS system, the modified SORS instrument showed a 300% improvement in signal-to-noise ratios (SNR). The results demonstrate the ability to acquire distinct Raman spectra from deep-seated glioblastomas in mice through the skull using a low power density (6.5 mW/mm2) and 30-times shorter integration times than a previous report (0.5 s versus 15 s). The ability to map the whole head of the mouse and determine a specific region of interest using as few as 12 spectra (6 s total acquisition time) is achieved. Subsequent use of a higher sampling frequency demonstrates it is possible to delineate the tumor margins in the region of interest with greater certainty. In addition, SESORRS images indicate the emergence of a secondary tumor region deeper within the brain in agreement with MRI and H&E staining. In comparison to traditional Raman imaging approaches, this approach enables improvements in the detection of deep-seated tumors in vivo through depths of several millimeters due to improvements in SNR, spectral resolution, and depth acquisition. This approach offers an opportunity to navigate larger areas of tissues in shorter time frames than previously reported, identify regions of interest, and then image the same area with greater resolution using a higher sampling frequency. Moreover, using a SESORRS approach, we demonstrate that it is possible to detect secondary, deeper-seated lesions through the intact skull.

2.
PLoS One ; 9(10): e111225, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25356771

RESUMEN

A variety of foods have been implicated in symptoms of patients with Irritable Bowel Syndrome (IBS) but wheat products are most frequently cited by patients as a trigger. Our aim was to investigate the effects of breads, which were fermented for different lengths of time, on the colonic microbiota using in vitro batch culture experiments. A set of in vitro anaerobic culture systems were run over a period of 24 h using faeces from 3 different IBS donors (Rome Criteria-mainly constipated) and 3 healthy donors. Changes in gut microbiota during a time course were identified by fluorescence in situ hybridisation (FISH), whilst the small-molecular weight metabolomic profile was determined by NMR analysis. Gas production was separately investigated in non pH-controlled, 36 h batch culture experiments. Numbers of bifidobacteria were higher in healthy subjects compared to IBS donors. In addition, the healthy donors showed a significant increase in bifidobacteria (P<0.005) after 8 h of fermentation of a bread produced using a sourdough process (type C) compared to breads produced with commercial yeasted dough (type B) and no time fermentation (Chorleywood Breadmaking process) (type A). A significant decrease of δ-Proteobacteria and most Gemmatimonadetes species was observed after 24 h fermentation of type C bread in both IBS and healthy donors. In general, IBS donors showed higher rates of gas production compared to healthy donors. Rates of gas production for type A and conventional long fermentation (type B) breads were almost identical in IBS and healthy donors. Sourdough bread produced significantly lower cumulative gas after 15 h fermentation as compared to type A and B breads in IBS donors but not in the healthy controls. In conclusion, breads fermented by the traditional long fermentation and sourdough are less likely to lead to IBS symptoms compared to bread made using the Chorleywood Breadmaking Process.


Asunto(s)
Pan , Microbioma Gastrointestinal , Síndrome del Colon Irritable/microbiología , Adulto , Técnicas de Cultivo Celular por Lotes , Ácidos Grasos Volátiles/biosíntesis , Heces/microbiología , Femenino , Fermentación , Harina , Gases/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hibridación Fluorescente in Situ , Cinética , Masculino , Metaboloma , Metabolómica
3.
Appl Spectrosc ; 61(3): 251-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17389064

RESUMEN

Spherical aberration is probably the most important factor limiting the practical performance of a confocal Raman microscope. This paper suggests some simple samples that can be readily fabricated in any laboratory to test the performance of a confocal Raman microscope under realistic operating conditions (i.e., a deeply buried interface, rather than the often-selected alternative of a bare silicon wafer or a thin film in air). The samples chosen were silicon wafers buried beneath transparent polymeric or glass overlayers, and a polymer laminate buried beneath a cover glass. These samples were used to compare the performance of three types of objectives (metallurgical, oil immersion, and dry corrected) in terms of depth resolution and signal throughput. The oil immersion objective gave the best depth resolution and intensity, followed by a dry corrected (60x, 0.9 numerical aperture) objective. The 100x metallurgical objective was the worst choice, with degradations of approximately 5x and 8x in the depth resolution and signal from a silicon wafer, comparing a bare wafer with one buried under a 150 microm cover glass. In particular, the high signal level obtained makes the immersion objective an attractive choice. Results from the buried laminate were even more impressive; a 30x improvement in spectral contrast was obtained using the oil immersion objective to analyze a thin (19 microm) coating on a PET substrate, buried beneath a 150 microm cover glass, compared with the metallurgical objective.

4.
Cytometry A ; 69(8): 880-7, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16969801

RESUMEN

Confocal Raman imaging of biological materials offers the opportunity to extract chemical information on histologically defined regions and on sub-cellular organelles. This article reviews the technology and some successful applications. The chemical contrast from vibrational Raman spectroscopy is derived from the specific atomic motion of every molecule as detected by the Raman phenomenon. Examples show the successful identification of foreign material in pathological specimens, identification of lipid-type and calcium mineral-type in a mouse model of atherosclerosis, and component mapping in a pharmaceutical tablet. It is suggested that these methods can even be useful in studying metabolic disorders.


Asunto(s)
Microscopía Confocal/métodos , Espectrometría de Fluorescencia/métodos , Espectrometría Raman/métodos , Vibración , Animales , Aterosclerosis/patología , Calcio/análisis , Celulosa/análisis , Humanos , Lípidos/análisis , Ratones , Microscopía Confocal/instrumentación , Análisis Multivariante , Valores de Referencia , Siliconas/análisis , Espectrometría de Fluorescencia/instrumentación , Espectrometría Raman/instrumentación , Suturas , Comprimidos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA