Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 10: e13142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341053

RESUMEN

Background: In North America, up to one billion birds are estimated to die annually due to collisions with glass. The transparent and reflective properties of glass present the illusion of a clear flight passage or continuous habitat. Approaches to reducing collision risk involve installing visual cues on glass that enable birds to perceive glass as a solid hazard at a sufficient distance to avoid it. Methods: We monitored for bird-window collisions between 2013 and 2018 to measure response to bird protection window treatments at two low-rise buildings at the Alaksen National Wildlife Area in Delta, British Columbia, Canada. After 2 years of collision monitoring in an untreated state, we retrofitted one building with Feather Friendly® circular adhesive markers applied in a grid pattern across all windows, enabling a field-based assessment of the relative reduction in collisions in the 2 years of monitoring following treatment. An adjacent building that had been constructed with a bird protective UV-treated glass called ORNILUX® Mikado, was monitored throughout the two study periods. Carcass persistence trials were conducted to evaluate the likelihood that carcasses were missed due to carcass removal between scheduled searches. Results and Conclusions: After accounting for differences in area of glass between the two buildings, year, and observer effects, our best-fit model for explaining collision risk included the building's treatment group, when compared to models that included building and season only. We found that the Feather Friendly® markers reduced collision risk at the retrofitted building by 95%. Collision incidence was also lower at the two monitored façades of the building with ORNILUX® glass compared to the building with untreated glass. Although more research is needed on the effectiveness of bird-protection products across a range of conditions, our results highlight the benefit of these products for reducing avian mortality due to collisions with glass.


Asunto(s)
Animales Salvajes , Ecosistema , Animales , Aves/fisiología , Vidrio , Colombia Británica
2.
PLoS One ; 10(4): e0125734, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25905712

RESUMEN

Studies of partial migrants provide an opportunity to assess the cost and benefits of migration. Previous work has demonstrated that sedentary American dippers (residents) have higher annual productivity than altitudinal migrants that move to higher elevations to breed. Here we use a ten-year (30 period) mark-recapture dataset to evaluate whether migrants offset their lower productivity with higher survival during the migration-breeding period when they occupy different habitat, or early and late-winter periods when they coexist with residents. Mark-recapture models provide no evidence that apparent monthly survival of migrants is higher than that of residents at any time of the year. The best-supported model suggests that monthly survival is higher in the migration-breeding period than winter periods. Another well-supported model suggested that residency conferred a survival benefit, and annual apparent survival (calculated from model weighted monthly apparent survival estimates using the Delta method) of residents (0.511 ± 0.038SE) was slightly higher than that of migrants (0.487 ± 0.032). Winter survival of American dippers was influenced by environmental conditions; monthly apparent survival increased as maximum daily flow rates increased and declined as winter temperatures became colder. However, we found no evidence that environmental conditions altered differences in winter survival of residents and migrants. Since migratory American dippers have lower productivity and slightly lower survival than residents our data suggests that partial migration is likely an outcome of competition for limited nest sites at low elevations, with less competitive individuals being forced to migrate to higher elevations in order to breed.


Asunto(s)
Passeriformes/fisiología , Migración Animal , Animales , Dinámica Poblacional , Estaciones del Año , Análisis de Supervivencia , Estados Unidos
3.
Biol Bull ; 210(3): 192-200, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16801494

RESUMEN

Cuttlefish can rapidly alter their appearance by using neurally controlled chromatophore organs. This ability may provide a window into their cognitive capacity. We test whether the changes in body pattern that occur during hunting depend on context. If they do, then it may be possible to use these changes to study cephalopod cognition while the animal is engaged in ecologically relevant tasks. We found consistent individual differences in the tendency of cuttlefish to hunt with the first two arms raised. We also found that cuttlefish usually darken their skin after they seize a prey item. This darkening is observed regardless of the identity of the prey (fish, crab, or shrimp), prey context (buried in sand, in a bare tank, or on top of a rock pile), or the presence of a sudden stimulus. The sudden stimulus was created by presenting an overhead model bird to the cuttlefish. The model induced components of the Deimatic Display, which is a form of antipredator behavior, suggesting that the model was perceived as a potential threat. Passing Cloud displays and the Darkening of the arms were significantly reduced after exposure to the model bird. The effect of a potential predator on body pattern expression during hunting suggests it may be possible to use these changes as a sensitive indicator of ecologically relevant learning.


Asunto(s)
Comunicación Animal , Señales (Psicología) , Conducta Predatoria , Sepia/fisiología , Pigmentación de la Piel/fisiología , Animales , Cognición , Aprendizaje , Sepia/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA