Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
BMC Ecol Evol ; 21(1): 51, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823805

RESUMEN

BACKGROUND: The New Guinean archipelago has been shaped by millions of years of plate tectonic activity combined with long-term fluctuations in climate and sea level. These processes combined with New Guinea's location at the tectonic junction between the Australian and Pacific plates are inherently linked to the evolution of its rich endemic biota. With the advent of molecular phylogenetics and an increasing amount of geological data, the field of New Guinean biogeography begins to be reinvigorated. RESULTS: We inferred a comprehensive dated molecular phylogeny of endemic diving beetles to test historical hypotheses pertaining to the evolution of the New Guinean biota. We used geospatial analysis techniques to compare our phylogenetic results with a newly developed geological terrane map of New Guinea as well as the altitudinal and geographic range of species ( https://arcg.is/189zmz ). Our divergence time estimations indicate a crown age (early diversification) for New Guinea Exocelina beetles in the mid-Miocene ca. 17 Ma, when the New Guinean orogeny was at an early stage. Geographic and geological ancestral state reconstructions suggest an origin of Exocelina ancestors on the eastern part of the New Guinean central range on basement rocks (with a shared affinity with the Australian Plate). Our results do not support the hypothesis of ancestors migrating to the northern margin of the Australian Plate from Pacific terranes that incrementally accreted to New Guinea over time. However, our analyses support to some extent a scenario in which Exocelina ancestors would have been able to colonize back and forth between the amalgamated Australian and Pacific terranes from the Miocene onwards. Our reconstructions also do not support an origin on ultramafic or ophiolite rocks that have been colonized much later in the evolution of the radiation. Macroevolutionary analyses do not support the hypothesis of heterogeneous diversification rates throughout the evolution of this radiation, suggesting instead a continuous slowdown in speciation. CONCLUSIONS: Overall, our geospatial analysis approach to investigate the links between the location and evolution of New Guinea's biota with the underlying geology sheds a new light on the patterns and processes of lineage diversification in this exceedingly diverse region of the planet.


Asunto(s)
Escarabajos , Animales , Australia , Biota , Nueva Guinea , Filogenia
2.
Mol Ecol ; 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30010208

RESUMEN

The habitat template concept applied to a freshwater system indicates that lotic species, or those which occupy permanent habitats along stream courses, are less dispersive than lentic species, or those that occur in more ephemeral aquatic habitats. Thus, populations of lotic species will be more structured than those of lentic species. Stream courses include both flowing water and small, stagnant microhabitats that can provide refuge when streams are low. Many species occur in these microhabitats but remain poorly studied. Here, we present population genetic data for one such species, the tropical diving beetle Exocelina manokwariensis (Dytiscidae), sampled from six localities along a ~300 km transect across the Birds Head Peninsula of New Guinea. Molecular data from both mitochondrial (CO1 sequences) and nuclear (ddRAD loci) regions document fine-scale population structure across populations that are ~45 km apart. Our results are concordant with previous phylogenetic and macroecological studies that applied the habitat template concept to aquatic systems. This study also illustrates that these diverse but mostly overlooked microhabitats are promising study systems in freshwater ecology and evolutionary biology. With the advent of next-generation sequencing, fine-scale population genomic studies are feasible for small nonmodel organisms to help illuminate the effect of habitat stability on species' natural history, population structure and geographic distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA