Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Ecol ; 40(5): 418-28, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24687179

RESUMEN

The convergent lady beetle (Hippodamia convergens) forms large overwintering aggregations at revisited montane microsites far removed from their summer foraging grounds. Although orientation responses to visual and altitudinal features of habitat can explain the arrival of migrants at the general overwintering macrosite, the role that pheromones play in the accumulation of individuals in inconspicuous hibernacula microsites is not fully understood. Through two-choice bioassays and gas chromatography and mass spectrometry, we found that H. convergens orient towards hydrocarbons previously deposited on their walking surfaces by conspecifics. n-Tricosane (C23) is primarily responsible for this chemically-mediated orientation. Footprint extracts, as well as C23 alone, induce the eventual accumulation in the field of migrant H. convergens at artificial hibernacula, confirming their probable role as aggregation signals. Aggregations persisted over many days when footprint extracts were applied in conjunction with the previously identified 2-isobutyl-3-methoxypyrazine (IBMP) aggregation pheromone. The C23 hydrocarbon functions as a pheromone that interacts with responses to methoxypyrazines to effectively mediate formation of persistent aggregations of diapausing conspecifics at specific microsites. Also discussed is the potential effect that C23 has as a persistent scent marker in establishing the traditional use of hibernacula.


Asunto(s)
Alcanos/metabolismo , Escarabajos/fisiología , Feromonas/metabolismo , Pirazinas/metabolismo , Alcanos/química , Migración Animal , Animales , Diapausa de Insecto , Femenino , Masculino , Feromonas/química , Pirazinas/química , Estaciones del Año
2.
J Chem Ecol ; 39(6): 723-32, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23657436

RESUMEN

Identification of the stimuli responsible for the formation of an aggregation can be used to distinguish between social and non-social aggregations and help in the process of identifying the adaptive benefits of the gregarious behavior. The convergent ladybird beetle, Hippodamia convergens, forms dense aggregations during winter diapause. The mechanisms of conspecific attraction and hibernacula site selection of H. convergens are not well understood. In laboratory and field bioassays, we evaluated the role of three defensive compounds in the formation of H. convergens aggregations. Diapausing H. convergens aggregated within the section of an arena exposed to alkylmethoxypyrazines. 2-Isobutyl-3-methoxypyrazine (IBMP) caused the strongest aggregative effect. Beetles also aggregated to some doses of 2-sec-butyl-3-methoxypyrazine, but appeared to be repelled at higher doses. A third constituent, 2-isopropyl-3-methoxypyrazine, generally had little effect on the distribution of beetles, although the highest dose tested was repellent. Beetles also aggregated to a blend of these alkylmethoxypyrazines at their natural ratio. During fall migration to overwintering sites, more beetles aggregated in artificial hibernacula baited with IBMP, confirming its function as an aggregation pheromone. These three pyrazines also function as warning odors that, in conjunction with other aposematic displays (contrasting red and black coloration, gregarious behavior, reflex bleeding), contribute to the multi-modal, anti-predatory defense of coccinellid beetles and some other arthropods. Confirmation of the role of some alkylmethoxypyrazines in coccinellid aggregations suggests that these defensive allomones have been co-opted for intraspecific communication.


Asunto(s)
Escarabajos/fisiología , Diapausa de Insecto , Feromonas/metabolismo , Pirazinas/metabolismo , Comunicación Animal , Animales , California , Quimiotaxis , Olfatometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA