Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Nanobiomed Res ; 3(4)2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37234365

RESUMEN

Brain metastases are the most lethal progression event, in part because the biological processes underpinning brain metastases are poorly understood. There is a paucity of realistic models of metastasis, as current in vivo murine models are slow to manifest metastasis. We set out to delineate metabolic and secretory modulators of brain metastases by utilizing two models consisting of in vitro microfluidic devices: 1) a blood brain niche (BBN) chip that recapitulates the blood-brain-barrier and niche; and 2) a migration chip that assesses cell migration. We report secretory cues provided by the brain niche that attract metastatic cancer cells to colonize the brain niche region. Astrocytic Dkk-1 is increased in response to brain-seeking breast cancer cells and stimulates cancer cell migration. Brain-metastatic cancer cells under Dkk-1 stimulation increase gene expression of FGF-13 and PLCB1. Further, extracellular Dkk-1 modulates cancer cell migration upon entering the brain niche.

2.
Adv Sci (Weinh) ; 8(3): 2002825, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33552865

RESUMEN

All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in "omic" layers that contribute to cell state and function. Recent advances in microengineering and high-throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high-throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.

3.
SLAS Technol ; 26(2): 200-208, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33183152

RESUMEN

It is often desirable to evaluate the ability of cells to move in an unrestricted manner in multiple directions without chemical gradients. By combining the standard radial migration assay with injection-molded gaskets and a rigid fixture, we have developed a highly reliable and sensitive method for observing and measuring radial cell migration. This method is adapted for use on high-throughput automated imaging systems. The use of injection-molded gaskets enables low-cost replacement of cell-wetted components. Moreover, the design enables secondary placement of attractants and co-cultures. This device and its enhanced throughput permit the use of therapeutic screening to evaluate phenotypic responses, for example, cancer cell migration response due to drugs or chemical signals. This approach is orthogonal to other 2D cell migration applications, such as scratch wound assays, although here we offer a noninvasive, enhanced-throughput device, which currently is not commercially available but is easily constructed. The proposed device is a systematic, reliable, rapid application to monitor phenotypic responses to chemotherapeutic screens, genetic alterations (e.g., RNAi and CRISPR), supplemental regimens, and other approaches, offering a reliable methodology to survey unbiased and noninvasive cell migration.


Asunto(s)
Neoplasias , Bioensayo , Movimiento Celular , Humanos
4.
J Vis Exp ; (162)2020 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-32865534

RESUMEN

Brain metastases are the most lethal cancer lesions; 10-30% of all cancers metastasize to the brain, with a median survival of only ~5-20 months, depending on the cancer type. To reduce the brain metastatic tumor burden, gaps in basic and translational knowledge need to be addressed. Major challenges include a paucity of reproducible preclinical models and associated tools. Three-dimensional models of brain metastasis can yield the relevant molecular and phenotypic data used to address these needs when combined with dedicated analysis tools. Moreover, compared to murine models, organ-on-a-chip models of patient tumor cells traversing the blood brain barrier into the brain microenvironment generate results rapidly and are more interpretable with quantitative methods, thus amenable to high throughput testing. Here we describe and demonstrate the use of a novel 3D microfluidic blood brain niche (µmBBN) platform where multiple elements of the niche can be cultured for an extended period (several days), fluorescently imaged by confocal microscopy, and the images reconstructed using an innovative confocal tomography technique; all aimed to understand the development of micro-metastasis and changes to the tumor micro-environment (TME) in a repeatable and quantitative manner. We demonstrate how to fabricate, seed, image, and analyze the cancer cells and TME cellular and humoral components, using this platform. Moreover, we show how artificial intelligence (AI) is used to identify the intrinsic phenotypic differences of cancer cells that are capable of transit through a model µmBBN and to assign them an objective index of brain metastatic potential. The data sets generated by this method can be used to answer basic and translational questions about metastasis, the efficacy of therapeutic strategies, and the role of the TME in both.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Dispositivos Laboratorio en un Chip , Aprendizaje Automático , Tomografía , Microambiente Tumoral , Animales , Humanos , Ratones
5.
Lab Chip ; 19(7): 1162-1173, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30810557

RESUMEN

Brain metastases are the most lethal complication of advanced cancer; therefore, it is critical to identify when a tumor has the potential to metastasize to the brain. There are currently no interventions that shed light on the potential of primary tumors to metastasize to the brain. We constructed and tested a platform to quantitatively profile the dynamic phenotypes of cancer cells from aggressive triple negative breast cancer cell lines and patient derived xenografts (PDXs), generated from a primary tumor and brain metastases from tumors of diverse organs of origin. Combining an advanced live cell imaging algorithm and artificial intelligence, we profile cancer cell extravasation within a microfluidic blood-brain niche (µBBN) chip, to detect the minute differences between cells with brain metastatic potential and those without with a PPV of 0.91 in the context of this study. The results show remarkably sharp and reproducible distinction between cells that do and those which do not metastasize inside of the device.


Asunto(s)
Inteligencia Artificial , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Separación Celular/métodos , Línea Celular Tumoral , Humanos , Fenotipo
6.
Lab Chip ; 18(18): 2776-2786, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30090895

RESUMEN

Tissues are increasingly being analyzed at the single cell level in order to characterize cellular diversity and identify rare cell types. Single cell analysis efforts are greatly limited, however, by the need to first break down tissues into single cell suspensions. Current dissociation methods are inefficient, leaving a significant portion of the tissue as aggregates that are filtered away or left to confound results. Here, we present a simple and inexpensive microfluidic device that simultaneously filters large tissue fragments and dissociates smaller aggregates into single cells, thereby improving single cell yield and purity. The device incorporates two nylon mesh membranes with well-defined, micron-sized pores that operate on aggregates of different size scales. We also designed the device so that the first filtration could be performed under tangential flow to minimize clogging. Using cancer cell lines, we demonstrated that aggregates were effectively dissociated using high flow rates and pore sizes that were smaller than a single cell. However, pore sizes that were less than half the cell size caused significant damage. We then improved results by passing the sample through two filter devices in series, with single cell yield and purity predominantly determined by the pore size of the second membrane. Next, we optimized performance using minced and digested murine kidney tissue samples, and determined that the combination of 50 and 15 µm membranes was optimal. Finally, we integrated these two membranes into a single filter device and performed validation experiments using minced and digested murine kidney, liver, and mammary tumor tissue samples. The dual membrane microfluidic filter device increased single cell numbers by at least 3-fold for each tissue type, and in some cases by more than 10-fold. These results were obtained in minutes without affecting cell viability, and additional filtering would not be required prior to downstream applications. In future work, we will create complete tissue analysis platforms by integrating the dual membrane microfluidic filter device with additional upstream tissue processing technologies, as well as downstream operations such as cell sorting and detection.


Asunto(s)
Agregación Celular , Separación Celular/instrumentación , Filtración/instrumentación , Dispositivos Laboratorio en un Chip , Membranas Artificiales , Nylons , Animales , Humanos , Riñón/citología , Células MCF-7 , Ratones , Análisis de la Célula Individual
7.
Sci Rep ; 8(1): 2774, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426941

RESUMEN

Maximizing the speed and efficiency at which single cells can be liberated from tissues would dramatically advance cell-based diagnostics and therapies. Conventional methods involve numerous manual processing steps and long enzymatic digestion times, yet are still inefficient. In previous work, we developed a microfluidic device with a network of branching channels to improve the dissociation of cell aggregates into single cells. However, this device was not tested on tissue specimens, and further development was limited by high cost and low feature resolution. In this work, we utilized a single layer, laser micro-machined polyimide film as a rapid prototyping tool to optimize the design of our microfluidic channels to maximize dissociation efficiency. This resulted in a new design with smaller dimensions and a shark fin geometry, which increased recovery of single cells from cancer cell aggregates. We then tested device performance on mouse kidney tissue, and found that optimal results were obtained using two microfluidic devices in series, the larger original design followed by the new shark fin design as a final polishing step. We envision our microfluidic dissociation devices being used in research and clinical settings to generate single cells from various tissue specimens for diagnostic and therapeutic applications.


Asunto(s)
Agregación Celular , Separación Celular/métodos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Animales , Diseño de Equipo , Humanos , Hidrodinámica , Riñón , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
8.
Sci Rep ; 7(1): 13081, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29026113

RESUMEN

Advancing knowledge of biological mechanisms has come to depend upon genetic manipulation of cells and organisms, relying upon cellular cloning methods that remain unchanged for decades, are labor and time intensive, often taking many months to come to fruition. Thus, there is a pressing need for more efficient processes. We have adapted a newly developed micropallet array platform, termed the "ferro-core micropallet array", to dramatically improve and accelerate the process of isolating clonal populations of adherent cells from heterogeneous mixtures retaining the flexibility of employing a wide range of cytometric parameters for identifying colonies and cells of interest. Using transfected (retroviral oncogene or fluorescent reporter construct) rat 208 F cells, we demonstrated the capacity to isolate and expand pure populations of genetically manipulated cells via laser release and magnetic recovery of single micropallets carrying adherent microcolonies derived from single cells. This platform can be broadly applied to biological research, across the spectrum of molecular biology to cellular biology, involving fields such as cancer, developmental, and stem cell biology. The ferro-core micropallet array platform provides significant advantages over alternative sorting and cloning methods by eliminating the necessity for repetitive purification steps and increasing throughput by dramatically shortening the time to obtain clonally expanded cell colonies.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Animales , Células Cultivadas , Fibronectinas/química , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Ratas
9.
Sci Rep ; 7(1): 10173, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860641

RESUMEN

Resistive-pulse sensing is a label-free method for characterizing individual particles as they pass through ion-conducting channels or pores. During a resistive pulse experiment, the ionic current through a conducting channel is monitored as particles suspended in the solution translocate through the channel. The amplitude of the current decrease during a translocation, or 'pulse', depends not only on the ratio of the particle and channel sizes, but also on the particle position, which is difficult to resolve with the resistive pulse signal alone. We present experiments of simultaneous electrical and optical detection of particles passing through microfluidic channels to resolve the positional dependencies of the resistive pulses. Particles were tracked simultaneously in the two signals to create a mapping of the particle position to resistive pulse amplitude at the same instant in time. The hybrid approach will improve the accuracy of object characterization and will pave the way for observing dynamic changes of the objects such as deformation or change in orientation. This combined approach of optical detection and resistive pulse sensing will join with other attempts at hybridizing high-throughput detection techniques such as imaging flow cytometry.

10.
Lab Chip ; 17(19): 3300-3309, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28850139

RESUMEN

The ability to harvest single cells from tissues is currently a bottleneck for cell-based diagnostic technologies, and remains crucial in the fields of tissue engineering and regenerative medicine. Tissues are typically broken down using proteolytic digestion and various mechanical treatments, but success has been limited due to long processing times, low yield, and high manual labor burden. Here, we present a novel microfluidic device that utilizes precision fluid flows to improve the speed and efficiency of tissue digestion. The microfluidic channels were designed to apply hydrodynamic shear forces at discrete locations on tissue specimens up to 1 cm in length and 1 mm in diameter, thereby accelerating digestion through hydrodynamic shear forces and improved enzyme-tissue contact. We show using animal organs that our digestion device with hydro-mincing capabilities was superior to conventional scalpel mincing and digestion based on recovery of DNA and viable single cells. Thus, our microfluidic digestion device can eliminate or reduce the need to mince tissue samples with a scalpel, while reducing sample processing time and preserving cell viability. Another advantage is that downstream microfluidic operations could be integrated to enable advanced cell processing and analysis capabilities. We envision our novel device being used in research and clinical settings to promote single cell-based analysis technologies, as well as to isolate primary, progenitor, and stem cells for use in the fields of tissue engineering and regenerative medicine.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Ingeniería de Tejidos/instrumentación , Animales , Supervivencia Celular , Células Cultivadas , Diseño de Equipo , Riñón/citología , Hígado/citología , Ratones
11.
Adv Healthc Mater ; 5(7): 767-71, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26924570

RESUMEN

A Micropallet-Array-based strategy allowing the identification of cells of defined phenotype in complex mixtures, such as would be obtained from a tissue biopsy, is presented. Following the distribution of single adherent cells from the mixture on individual pedestals, termed "micropallets", immunofluorescent confocal imaging is applied to interrogate the expression of five cell surface molecules.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnica del Anticuerpo Fluorescente/métodos , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Línea Celular Tumoral , Membrana Celular/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Imagenología Tridimensional , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA