Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 12365, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858980

RESUMEN

Evidence to support the effectiveness of ß3-adrenoceptor agonist mirabegron and anti-muscarinic solifenacin in the management of bladder dysfunction caused by psychological stress is lacking. This study investigates whether mirabegron or solifenacin reduces the bladder overactivity caused by water avoidance stress (WAS) in mice. Female mice were exposed to WAS for 1 h/day for 10 days and received either placebo, solifenacin or mirabegron in drinking water. Controls were age-matched without stress exposure. Voiding behaviour and functional isolated whole bladder responses during distension and in response to pharmacological agents and electrical field stimulation was investigated. Urinary frequency was significantly increased following stress. Mice treated with mirabegron or solifenacin displayed significantly fewer voiding events compared to the stressed mice, and voiding frequency in drug-treated animals was comparable to unstressed controls. The maximal contractile responses of bladders to carbachol were significantly enhanced by stress and reduced by mirabegron but not solifenacin. The frequency of phasic bladder contractions following stimulation with carbachol was significantly enhanced following stress and remained elevated in the mirabegron treated group. However, treatment with solifenacin significantly reduced the frequency of phasic contractions to unstressed control levels. Solifenacin and mirabegron are beneficial in reducing the overall voiding dysfunction caused by WAS in mice.


Asunto(s)
Succinato de Solifenacina , Vejiga Urinaria Hiperactiva , Acetanilidas/farmacología , Animales , Carbacol , Femenino , Ratones , Antagonistas Muscarínicos/uso terapéutico , Succinato de Solifenacina/farmacología , Succinato de Solifenacina/uso terapéutico , Estrés Psicológico , Tiazoles , Resultado del Tratamiento
2.
PLoS One ; 17(4): e0266458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35446874

RESUMEN

Psychological stress causes bladder dysfunction in humans and in rodent models, with increased urinary frequency and altered contractile responses evident following repeated environmental stress exposure. However, whether these changes persist after removal of the stressor is unknown, and the aim of this study was to determine if stress-induced changes in voiding behaviour and bladder function recover following removal of the stressor. Adult female mice were allocated to three groups: Unstressed, Stressed or Stressed + Recovery. Animals in the stressed groups were exposed to water avoidance stress for 1h/day for 10-days, with unstressed animals age-matched and housed under normal conditions. For recovery studies, animals were housed without stress exposure for an additional 10-days. Voiding behaviour was assessed periodically and animals sacrificed on day 10 (Unstressed and Stressed) or day 20 (Unstressed and Stressed + Recovery). Isolated whole bladder studies were used to assess compliance, urothelial mediator release and contractile responses. Exposure to stress increased plasma corticosterone levels almost three-fold (P<0.05) but this returned to baseline during the recovery period. Contractile responses of the bladder to carbachol and KCl were also increased following stress, and again fully recovered after a 10-day stress-free period. In contrast, stress increased urinary frequency four-fold (P<0.001), but this did not return fully to baseline during the recovery period. Bladder compliance was unchanged by stress; however, it was increased in the stressed + recovery group (P<0.05). Thus, following a stress-free period there is partial recovery of voiding behaviour, with an increase in bladder compliance possibly contributing to the compensatory mechanisms.


Asunto(s)
Vejiga Urinaria , Micción , Animales , Carbacol , Corticosterona , Femenino , Ratones , Estrés Psicológico , Micción/fisiología
3.
Sci Rep ; 11(1): 17508, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471159

RESUMEN

Psychological stress has been linked to the development and exacerbation of overactive bladder symptoms, as well as afferent sensitisation in other organ systems. Therefore, we aimed to investigate the effects of water avoidance stress on bladder afferent nerve activity in response to bladder filling and pharmaceutical stimulation with carbachol and ATP in mice. Adult female C57BL/6J mice were exposed to either water avoidance stress (WAS) for 1 h/day for 10 days or normal housing conditions. Voiding behaviour was measured before starting and 24-h after final stress exposure and then animals were euthanised to measure afferent nerve activity in association with bladder compliance, spontaneous phasic activity, contractile responses, as well as release of urothelial mediators. WAS caused increased urinary frequency without affecting urine production. The afferent nerve activity at low bladder pressures (4-7 mmHg), relevant to normal physiological filling, was significantly increased after stress. Both low and high threshold nerves demonstrated enhanced activity at physiological bladder pressures. Urothelial ATP and acetylcholine release and bladder compliance were unaffected by stress as was the detrusor response to ATP (1 mM) and carbachol (1 µM). WAS caused enhanced activity of individual afferent nerve fibres in response bladder distension. The enhanced activity was seen in both low and high threshold nerves suggesting that stressed animals may experience enhanced bladder filling sensations at lower bladder volumes as well as increased pain sensations, both potentially contributing to the increased urinary frequency seen after stress.


Asunto(s)
Vías Aferentes/fisiopatología , Neuronas Aferentes/patología , Estrés Psicológico/complicaciones , Vejiga Urinaria Hiperactiva/patología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Vejiga Urinaria Hiperactiva/etiología
4.
Low Urin Tract Symptoms ; 13(4): 414-424, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34132480

RESUMEN

It is well established that lower urinary tract symptoms (LUTS), particularly urinary urgency and incontinence, cause stress and anxiety for patients. However, there is mounting evidence that the relationship between these two factors is bidirectional and that chronic psychological stress itself can result in the development of symptoms such as urinary frequency, urgency, incontinence, and pelvic pain. This review considers the evidence that such a relationship exists and reviews the literature from clinical and animal studies to identify some of the mechanisms that might be involved. Inflammatory responses induced by chronic stress appear to offer the strongest link to bladder dysfunction. There is overwhelming evidence, both in patients and animal models, for a release of pro-inflammatory cytokines and chemokines during periods of chronic stress. Furthermore, cytokines have been shown to cause bladder dysfunction and pain via actions in the central nervous system and locally in the bladder. In the brain and spinal cord, pro-inflammatory cytokines influence the regulation of micturition pathways by corticotropin-releasing factor (CRF) and its receptors, while peripherally cytokines affect bladder function, directly causing detrusor hypertrophy and afferent nerve hypersensitivity. There is little information on which treatments may have most benefit for stressed/anxious patients with LUTS, but animal studies suggest traditional drugs for overactive bladder (solifenacin, mirabegron) are more effective on LUTS than anxiolytic drugs (fluoxetine, imipramine). The preliminary preclinical data for CRF receptor antagonists is not consistent. A clearer understanding of the mechanisms involved in stress-induced LUTS should provide a basis for improved treatment of this condition.


Asunto(s)
Síntomas del Sistema Urinario Inferior , Vejiga Urinaria Hiperactiva , Incontinencia Urinaria , Animales , Humanos , Síntomas del Sistema Urinario Inferior/tratamiento farmacológico , Síntomas del Sistema Urinario Inferior/etiología , Estrés Psicológico/complicaciones , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/etiología
5.
Life Sci ; 278: 119598, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33984361

RESUMEN

AIMS: To determine if treatment with the selective serotonin reuptake inhibitor (SSRI) sertraline reduces the bladder dysfunction caused by water avoidance stress in mice. MAIN METHODS: Adult female mice were randomly allocated to (1) Unstressed, (2) Stressed or (3) Stress + Sertraline experimental groups. Stressed mice were subjected to water avoidance for 1 h/day for 10 days and received sertraline or vehicle in drinking water, starting 10-days prior to the first stress exposure. Age matched control/unstressed mice were house under normal conditions without stress exposure. Voiding behaviour was assessed throughout the experimental protocol. After the final stress exposure, a blood sample was taken to measure plasma corticosterone levels and bladders were removed, catheterised and intravesical pressure responses recorded during distension and in response to pharmacological agents. KEY FINDINGS: Plasma corticosterone levels in sertraline-treated animals were equivalent to unstressed controls and significantly decreased compared to the stressed group. Voiding frequency was significantly increased in the stressed group, and treatment with sertraline significantly decreased voiding frequency, however, this remained elevated compared to unstressed control animals. Bladders from stressed mice displayed enhanced maximal contractile response to the muscarinic agonist carbachol and greater release of ACh in the serosal fluid, which was reduced to control levels by sertraline treatment. Spontaneous phasic contractions were not altered by stress but were significantly reduced in bladders from sertraline treated animals, relative to controls. SIGNIFICANCE: These results indicate that management of voiding dysfunction caused by psychological stress may be aided by the addition of an SSRI such as sertraline.


Asunto(s)
Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Sertralina/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/fisiopatología , Vejiga Urinaria/efectos de los fármacos , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Vejiga Urinaria/fisiopatología , Micción/efectos de los fármacos
6.
Life Sci ; 265: 118735, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33166589

RESUMEN

AIMS: To investigates the effects of water avoidance stress on voiding behaviour and functional bladder responses in mice. MAIN METHODS: Mice in the Stress group were exposed to water avoidance stress (WAS) for 1 h/day for 10 days, Controls were age-matched and housed normally. Voiding behaviour was measured periodically throughout the stress protocol and bladders were isolated 24-h after final stress exposure to measure bladder compliance, spontaneous phasic activity, contractile responses, and release of urothelial mediators. KEY FINDINGS: Repeated stress exposure induced a significant increase in plasma corticosterone levels in the WAS group compared to control. An overactive bladder phenotype was observed in WAS mice, causing a significant increase in the number of voiding events observed from as early as day-3, and a 7-fold increase following 10-days' stress. This increase in voiding frequency was associated with a significant decrease in void size, an increase in the number of small voids, but no change in total voided volume. Bladders from stressed mice showed a significant increase in the maximum responses to the muscarinic agonist carbachol (p < 0.01), in addition to enhanced pressure responses to the purinergic agonists ATP (p < 0.05) and αß-mATP (p < 0.05), and non-receptor mediated contractions to KCl (p < 0.05) compared to controls. Nerve-mediated bladder contractions to electric field stimulation were not significantly affected by stress, nor were spontaneous phasic contractions or release of urothelial ATP and acetylcholine. SIGNIFICANCE: Repeated exposure to water avoidance stress produced an overactive bladder phenotype, confirmed by increased voiding frequency, and associated with enhanced bladder contractile responses.


Asunto(s)
Contracción Muscular/fisiología , Estrés Psicológico/metabolismo , Vejiga Urinaria Hiperactiva/fisiopatología , Acetilcolina , Animales , Carbacol/farmacología , Corticosterona , Femenino , Ratones , Ratones Endogámicos C57BL , Agonistas Muscarínicos/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Cloruro de Potasio/farmacología , Agonistas Purinérgicos/farmacología , Estrés Psicológico/fisiopatología , Vejiga Urinaria/patología , Vejiga Urinaria Hiperactiva/metabolismo , Micción/efectos de los fármacos
7.
Front Physiol ; 11: 247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265738

RESUMEN

Psychological stress is associated with bladder dysfunction, however, the local bladder mechanisms affected are not well understood. This study aimed to determine how psychological stress, caused by social defeat or witness trauma, affects voiding behavior and bladder function. Pairs of male C57Bl/6J mice were placed in a custom-made plexiglass chamber with an aggressor ARC(S) mouse for 1 h/day for 10 days. The social defeat mouse was in physical contact with the aggressor, while the witness was physically separated but could observe interactions between its cage-mate and the aggressor. Age matched control pairs were used for comparison. Voiding analysis was conducted periodically over the 10 days. An ex vivo whole bladder preparation was used to assess functional changes after the period of stress. Plasma corticosterone levels were significantly increased by both social defeat and witness trauma stress when compared to unstressed controls. Voiding analysis revealed a significant decrease in voiding frequency in the social defeat group compared to control animals, indicating an altered voiding phenotype. Witness trauma did not alter voiding behavior. Bladder contractile responses to cholinergic stimulation were not significantly altered in either stress group, nor was relaxation to the beta-adrenoceptor agonist isoprenaline. However, nerve evoked contractile responses were significantly increased at all frequencies in bladders from social defeat but not witness trauma mice. Purinergic contractile responses were also significantly enhanced in this group. Social defeat also resulted in increased urothelial acetylcholine release during bladder distension, with no change in ATP release. In conclusion, functional bladder changes are dependent upon stressor type. Enhanced urothelial acetylcholine may desensitize bladder sensory nerves, which, coupled with more efficient voiding contractions due to enhanced nerve-mediated and purinergic detrusor responses, may account for the altered voiding phenotype observed. This study reports a male model of social defeat stress with reduced urinary frequency, with no voiding changes observed in the witness.

8.
J Pharmacol Exp Ther ; 366(2): 282-290, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29784662

RESUMEN

Inflammation may play a causal role in urological side effects reported following intravesical mitomycin C (MMC). Our aim was to investigate the effects of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) on the cytotoxic potency of MMC and the potential for IBU to protect against bladder dysfunction. Malignant (RT4, T24) and normal (UROtsa) urothelial lines were treated with MMC followed by ibuprofen, with cell viability and caspase-3 activity assessed. Female C57BL/6JArc mice (Saline/Control, MMC, Saline + IBU, and MMC + IBU) received intravesical treatment (1 hour) with saline or MMC (2 mg/ml), with IBU (1 mg/ml) delivered in drinking water (for 7 days). Voiding pattern analysis was conducted prior to and following (1, 3, 7 days) treatment. A whole-bladder preparation was used to assess compliance, contractile responses, and urothelial-mediator release. Ibuprofen selectively increased the cytotoxic potency of MMC and caspase-3 activity in both malignant cells lines but not in UROtsa. MMC significantly increased voiding frequency at 24 hours and 3 days, whereas administration of ibuprofen significantly reduced this effect. MMC significantly increased the frequency of spontaneous contractions from 2.3 ± 0.5 contractions/min in saline controls to 4.8 ± 0.16 contractions/min, with ibuprofen protecting against this change. Interestingly, although nerve-evoked responses were not altered by MMC, they were increased in both IBU groups. Ibuprofen improved voiding dysfunction following MMC treatment by reducing spontaneous phasic activity and enhancing nerve-mediated contractions. Ibuprofen use in bladder cancer patients may help to minimize the urological adverse effects associated with intravesical MMC.


Asunto(s)
Ibuprofeno/farmacología , Mitomicina/farmacología , Contracción Muscular/efectos de los fármacos , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/fisiología , Acetilcolina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Vejiga Urinaria/inervación , Vejiga Urinaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA