Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cytotherapy ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39269404

RESUMEN

Invariant natural killer T (iNKT) cells are a small fraction of T lymphocytes with strong cytotoxic and immunoregulatory properties. We previously showed that human culture-expanded iNKT cells prevent alloreactivity and lyse primary leukemia blasts. Here, iNKT cells have several advantages over T cells based on their immunoregulatory capabilities. Since chimeric antigen receptors (CARs) increase the benefit of immune effector cells, they play a crucial role in improvement of cytotoxic abilities of novel cellular therapeutics such as iNKT cells. In the present study, we investigated transactivation of NK cells and prevention of alloreactivity through iNKT cells transduced with a CD19-directed CAR. iNKT cells were isolated by magnetic cell separation from peripheral blood mononuclear cells and transduced with a CD19-CAR retrovirus. Transduction efficiency, purity and cell subsets were measured by flow cytometry. Transactivation and cytotoxicity assays have been established to investigate the ability of CD19-CAR-iNKT cells to transactivate primary NK cells. A mixed lymphocyte reaction (MLR) was performed to explore the inhibition of alloreactive CD3+ T cells by CD19-CAR-iNKT cells. CD19-CAR-iNKT cells are able to transactivate NK cells independent of cell contact: The expression of activation marker CD69 was significantly increased and also production of the proinflammatory cytokine interferon-gamma was higher in NK cells pretreated with CD19-CAR-iNKT cells. Consequently, the cytotoxic activity of such NK cells was significantly increased being able to lyse leukemia cells more effectively than without prior transactivation. Adding CD19-CAR-iNKT cells to an MLR resulted in a decreased expression of the T cell activation marker CD25 on alloreactive CD3+ T lymphocytes stimulated with HLA mismatched dendritic cells. Also, the proliferation of alloreactive CD3+ T lymphocytes was significantly reduced in this setting. We demonstrate that CD19-CAR-iNKT cells keep their immunoregulatory properties despite transduction with a CAR making them an attractive effector cell population for application after allogeneic hematopoietic cell transplantation. By transactivating NK cells, increasing their cytotoxic activity and suppressing alloreactive T cells, they might further improve outcomes through prevention of both relapse and graft-versus-host disease.

2.
J Immunother Cancer ; 12(1)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296597

RESUMEN

BACKGROUND: Relapse and graft-versus-host disease (GVHD) are the main causes of death after allogeneic hematopoietic cell transplantation (HCT). Preclinical murine models and clinical data suggest that invariant natural killer T (iNKT) cells prevent acute and chronic GVHD. In addition, iNKT cells are crucial for efficient immune responses against malignancies and contribute to reduced relapse rates after transplantation. Chimeric antigen receptors (CAR) redirect effector cells to cell surface antigens and enhance killing of target cells. With this study, we aimed to combine enhanced cytotoxicity of CD19-CAR-iNKT cells against lymphoma cells with their tolerogenic properties. METHODS: iNKT cells were isolated from peripheral blood mononuclear cells and transduced with an anti-CD19-CAR retrovirus. After in vitro expansion, the functionality of CD19-CAR-iNKT cells was assessed by flow cytometry, image stream analysis and multiplex analysis in single-stimulation or repeated-stimulation assays. Moreover, the immunoregulatory properties of CD19-CAR-iNKT cells were analyzed in apoptosis assays and in mixed lymphocyte reactions. The effect of checkpoint inhibition through nivolumab was analyzed in these settings. RESULTS: In this study, we could show that the cytotoxicity of CD19-CAR-iNKT cells was mediated either through engagement of their CAR or their invariant T-cell receptor, which may circumvent loss of response through antigen escape. However, encounter of CD19-CAR-iNKT cells with their target induced a phenotype of exhaustion. Consequently, checkpoint inhibition increased cytokine release, cytotoxicity and survival of CD19-CAR-iNKT cells. Additionally, they showed robust suppression of alloreactive immune responses. CONCLUSION: In this work, we demonstrate that CAR-iNKT cells are a powerful cytotherapeutic option to prevent or treat relapse while potentially reducing the risk of GVHD after allogeneic HCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Células T Asesinas Naturales , Receptores Quiméricos de Antígenos , Humanos , Ratones , Animales , Receptor de Muerte Celular Programada 1 , Antígenos CD19 , Enfermedad Injerto contra Huésped/etiología , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA