RESUMEN
The intracellular protozoan Toxoplasma gondii is one of the most successful parasites, with the ability to invade all warm-blooded animals, including humans. T. gondii heat shock protein 60 (TgHSP60) plays an important role in intracellular survival and in the differentiation of the parasite, and is also recognized as being associated with its virulence. In the present study, we examined sequence variation in the hsp60 coding region among five T. gondii isolates from different hosts and geographical regions, which were compared with the corresponding sequences of strains ME49, 76K, and GT1 available in the ToxoDB databases. The length of the T. gondii hsp60 sequence was 1728 bp for all strains, and the A+T content ranged from 41.96 to 42.13%. The sequence alignment of the 8 T. gondii strains identified 20 variable positions (0-1.44%) and showed 1.16% overall sequence variation, suggesting a relatively considerable sequence diversity. Phylogenetic analysis of hsp60 sequences using Bayesian inference and maximum parsimony differentiated the two major clonal lineage types into their respective clusters, and thus separated atypical strains from classical genotypes. The results of the present study suggested that the coding region of the hsp60 gene may represent a novel genetic marker for intraspecies phylogenetic analyses of T. gondii.
Asunto(s)
Chaperonina 60/genética , Variación Genética , Proteínas Protozoarias/genética , Toxoplasma/genética , Animales , Gatos , Chaperonina 60/clasificación , ADN Protozoario/química , ADN Protozoario/genética , Geografía , Especificidad del Huésped/genética , Humanos , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Ovinos , Porcinos , Toxoplasma/fisiologíaRESUMEN
The developmental regulation of the mammalian DNA-repair enzyme uracil DNA glycosylase was examined in the rat at specific intervals ranging from -4 days before to 106 days after birth. Enzyme activity was quantitated by in vitro biochemical assay. In the adult animal, as measured in crude cell extracts, three organs (liver, kidney and spleen) had significant levels of activity. In contrast, three organs (brain, heart and lung) had low activity. Partial purification of this enzyme identified one major species of molecular weight 32,700 Da, demonstrating the quantitation of the nuclear glycosylase. During development, with the exception of the liver, the specific activity of the glycosylase paralleled the regulation of DNA synthesis. In these organs the highest levels of the glycosylase and the rate of DNA replication were observed around the time of birth. In the liver, DNA replication was similarly regulated. However, glycosylase activity was minimal at early stages of life. Instead, maximal levels were observed at 14-21 days after birth. At that time DNA replication was severely reduced. These results demonstrate that individual organs express this DNA-repair enzyme in a distinct and specific pattern during development. Accordingly, the regulation of the uracil DNA glycosylase during development may provide a model system to examine the differential regulation of DNA-repair genes.