Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853875

RESUMEN

The left supramarginal gyrus (LSMG) may mediate attention to memory, and gauge memory state and performance. We performed a secondary analysis of 142 verbal delayed free recall experiments, in patients with medically-refractory epilepsy with electrode contacts implanted in the LSMG. In 14 of 142 experiments (in 14 of 113 patients), the cross-validated convolutional neural networks (CNNs) that used 1-dimensional(1-D) pairs of convolved high-gamma and beta tensors, derived from the LSMG recordings, could label recalled words with an area under the receiver operating curve (AUROC) of greater than 60% [range: 60-90%]. These 14 patients were distinguished by: 1) higher amplitudes of high-gamma bursts; 2) distinct electrode placement within the LSMG; and 3) superior performance compared with a CNN that used a 1-D tensor of the broadband recordings in the LSMG. In a pilot study of 7 of these patients, we also cross-validated CNNs using paired 1-D convolved high-gamma and beta tensors, from the LSMG, to: a) distinguish word encoding epochs from free recall epochs [AUC 0.6-1]; and distinguish better performance from poor performance during delayed free recall [AUC 0.5-0.86]. These experiments show that bursts of high-gamma and beta generated in the LSMG are biomarkers of verbal memory state and performance.

2.
J Imaging ; 5(1)2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34465703

RESUMEN

Noise-based quality evaluation of MRI images is highly desired in noise-dominant environments. Current noise-based MRI quality evaluation methods have drawbacks which limit their effective performance. Traditional full-reference methods such as SNR and most of the model-based techniques cannot provide perceptual quality metrics required for accurate diagnosis, treatment and monitoring of diseases. Although techniques based on the Moran coefficients are perceptual quality metrics, they are full-reference methods and will be ineffective in applications where the reference image is not available. Furthermore, the predicted quality scores are difficult to interpret because their quality indices are not standardized. In this paper, we propose a new no-reference perceptual quality evaluation method for grayscale images such as MRI images. Our approach is formulated to mimic how humans perceive an image. It transforms noise level into a standardized perceptual quality score. Global Moran statistics is combined with local indicators of spatial autocorrelation in the form of local Moran statistics. Quality score is predicted from perceptually weighted combination of clustered and random pixels. Performance evaluation, comparative performance evaluation and validation by human observers, shows that the proposed method will be a useful tool in the evaluation of retrospectively acquired MRI images and the evaluation of noise reduction algorithms.

3.
IEEE J Transl Eng Health Med ; 6: 1800915, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30197842

RESUMEN

Magnetic resonance imaging (MRI) system images are important components in the development of drugs because it can reveal the underlying pathology in diseases. Unfortunately, the processes of image acquisition, storage, transmission, processing, and analysis can influence image quality with the risk of compromising the reliability of MRI-based data. Therefore, it is necessary to monitor image quality throughout the different stages of the imaging workflow. This report describes a new approach to evaluate the quality of an MRI slice in multi-center clinical trials. The design philosophy assumes that an MRI slice, such as all natural images, possess statistical properties that can describe different levels of contrast degradation. A unique set of pixel configuration is assigned to each possible level of contrast-distorted MRI slice. Invocation of the central limit theorem results in two separate Gaussian distributions. The central limit theorem says that the mean and standard deviation of pixel configuration assigned to each possible level of contrast degradation will follow a normal distribution. The mean of each normal distribution corresponds to the mean and standard deviation of the underlying ideal image. Quality prediction processes for a test image can be summarized into four steps. The first step extracts local contrast feature image from the test image. The second step computes the mean and standard deviation of the feature image. The third step separately standardizes each normal distribution using the mean and standard deviation computed from the feature image. This gives two separate z-scores. The fourth step predicts the lightness contrast quality score and the texture contrast quality score from cumulative distribution function of the appropriate normal distribution. The proposed method was evaluated objectively on brain and cardiac MRI volume data using four different types and levels of degradation. The four types of degradation are Rician noise, circular blur, motion blur, and intensity nonuniformity also known as bias fields. Objective evaluation was validated using a proposed variation of difference of mean opinion scores. Results from performance evaluation show that the proposed method will be suitable to monitor and standardize image quality throughout the different stages of imaging workflow in large clinical trials. MATLAB implementation of the proposed objective quality evaluation method can be downloaded from (https://github.com/ezimic/Image-Quality-Evaluation).

4.
BMC Med Imaging ; 18(1): 31, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30223797

RESUMEN

BACKGROUND: Multi-site neuroimaging offer several benefits and poses tough challenges in the drug development process. Although MRI protocol and clinical guidelines developed to address these challenges recommend the use of good quality images, reliable assessment of image quality is hampered by the several shortcomings of existing techniques. METHODS: Given a test image two feature images are extracted. They are grayscale and contrast feature images. Four binary images are generated by setting four different global thresholds on the feature images. Image quality is predicted by measuring the structural similarity between appropriate pairs of binary images. The lower and upper limits of the quality index are 0 and 1. Quality prediction is based on four quality attributes; luminance contrast, texture, texture contrast and lightness. RESULTS: Performance evaluation on test data from three multi-site clinical trials show good objective quality evaluation across MRI sequences, levels of distortion and quality attributes. Correlation with subjective evaluation by human observers is ≥ 0.6. CONCLUSION: The results are promising for the evaluation of MRI protocols, specifically the standardization of quality index, designed to overcome the challenges encountered in multi-site clinical trials.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/normas , Intensificación de Imagen Radiográfica/normas , Algoritmos , Ensayos Clínicos como Asunto , Humanos , Sistema Métrico , Estudios Multicéntricos como Asunto , Neuroimagen/normas
5.
Biomed Eng Online ; 17(1): 76, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29898715

RESUMEN

BACKGROUND: Rician noise, bias fields and blur are the common distortions that degrade MRI images during acquisition. Blur is unique in comparison to Rician noise and bias fields because it can be introduced into an image beyond the acquisition stage such as postacquisition processing and the manifestation of pathological conditions. Most current blur assessment algorithms are designed and validated on consumer electronics such as television, video and mobile appliances. The few algorithms dedicated to medical images either requires a reference image or incorporate manual approach. For these reasons it is difficult to compare quality measures from different images and images with different contents. Furthermore, they will not be suitable in environments where large volumes of images are processed. In this report we propose a new blind blur assessment method for different types of MRI images and for different applications including automated environments. METHODS: Two copies of the test image are generated. Edge map is extracted by separately convolving each copy of the test image with two parallel difference of Gaussian filters. At the start of the multiscale representation, the initial output of the filters are equal. In subsequent scales of the multiscale representation, each filter is tuned to different operating parameters over the same fixed range of Gaussian scales. The filters are termed low and high energy filters based on their characteristics to successively attenuate and highlight edges over the range of multiscale representation. Quality score is predicted from the distance between the normalized mean of the edge maps at the final output of the filters. RESULTS: The proposed method was evaluated on cardiac and brain MRI images. Performance evaluation shows that the quality index has very good correlation with human perception and will be suitable for application in routine clinical practice and clinical research.


Asunto(s)
Aumento de la Imagen/métodos , Imagen por Resonancia Magnética , Relación Señal-Ruido , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Corazón/diagnóstico por imagen , Humanos , Movimiento , Distribución Normal
6.
J Med Imaging (Bellingham) ; 4(2): 025504, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28630885

RESUMEN

We describe a postacquisition, attribute-based quality assessment method for brain magnetic resonance imaging (MRI) images. It is based on the application of Bayes theory to the relationship between entropy and image quality attributes. The entropy feature image of a slice is segmented into low- and high-entropy regions. For each entropy region, there are three separate observations of contrast, standard deviation, and sharpness quality attributes. A quality index for a quality attribute is the posterior probability of an entropy region given any corresponding region in a feature image where quality attribute is observed. Prior belief in each entropy region is determined from normalized total clique potential (TCP) energy of the slice. For TCP below the predefined threshold, the prior probability for a region is determined by deviation of its percentage composition in the slice from a standard normal distribution built from 250 MRI volume data provided by Alzheimer's Disease Neuroimaging Initiative. For TCP above the threshold, the prior is computed using a mathematical model that describes the TCP-noise level relationship in brain MRI images. Our proposed method assesses the image quality of each entropy region and the global image. Experimental results demonstrate good correlation with subjective opinions of radiologists for different types and levels of quality distortions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA