Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 7(3): 3024-3031, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38357218

RESUMEN

We examine halide anion-exchange reactions on CsPbX3 nanorods (NRs), and we identify reaction conditions that provide complete anion exchange while retaining both the highly quantum-confined 1-D morphology and metastable crystal lattice configurations that span a range between tetragonal structures and thermodynamically preferred orthorhombic structures. We find that the chemical stability of CsPbBr3 NRs is degraded by the presence of alkyl amines that etch CsPbBr3 and result in the formation of Cs4PbBr6 and 2-D bromoplumbates. Our study outlines strategies for maintaining metastable states of the soft lattices of perovskite nanocrystals undergoing exchange reactions, despite the thermodynamic driving force toward more stable lattice configurations during this disruptive chemical transformation. These strategies can be used to fine-tune the band gap of LHP-based nanostructures while preserving structure-property relationships that are contingent on metastable shapes and crystal configurations, aiding optoelectronic applications of these materials.

2.
J Phys Chem C Nanomater Interfaces ; 127(30): 14812-14821, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-38356733

RESUMEN

Colloidal lead halide perovskite nanorods have recently emerged as promising optoelectronic materials. However, more information about how shape anisotropy impacts their complex dielectric function is required to aid the development of applications that take advantage of the strongly polarized absorption and emission. Here, we have determined the anisotropy of the complex dielectric function of CsPbBr3 nanorods by analyzing the ensemble absorption spectra in conjunction with the ensemble spectral fluorescence anisotropy. This strategy allows us to distinguish the absorption of light parallel and perpendicular to the main axis so that the real and imaginary components of the dielectric function along each direction can be determined by the use of an iterative matrix inversion (IMI) methodology. We find that quantum confinement gives rise to unique axis-dependent electronic features in the dielectric function that increase the overall fluorescence anisotropy in addition to the optical anisotropy that results from particle shape, even in the absence of quantum confinement. Further, the procedure outlined here provides a strategy for obtaining anisotropic complex dielectric functions of colloidal materials of varying composition and aspect ratios using ensemble solution-phase spectroscopy.

3.
ACS Nano ; 16(5): 8318-8328, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35544608

RESUMEN

The fast kinetics of all-inorganic CsPbX3 (X = Cl, Br, or I) nanocrystal growth entail that many synthetic strategies for structural control established in other semiconductor systems do not apply. Rather, products are often determined by thermodynamic factors, limiting the range of synthetic outcomes and functionality. In this study, we show how reaction kinetics are significantly slowed if nanocrystals are prepared using a dual injection strategy that moderates the crucial interaction between cesium and halide during nucleation and growth. The result is highly uniform nanorod or cuboid nanocrystals with a controllable size and aspect ratio across the quantum confinement regime, obtainable for both pure and mixed halide compositions. Further, the crystal lattice is continuously tunable between the tetragonal (I4/mcm) and orthorhombic (Pbnm) phases, independent of the overall nanorod morphology, enabling significantly more sophisticated structure-property relationships that can be tailored during this kinetically controlled synthesis.

4.
Nanoscale ; 11(39): 18109-18115, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31576885

RESUMEN

Here, we report that the oxidation state of gold plays a dominant role in determining the reaction products when gold halide salts are mixed with all-inorganic lead halide perovskite nanocrystals. When CsPbX3 nanocrystals react with Au(i) halide salts, Au nanoparticles are deposited on the surface of the perovskites through the reduction of Au1+ ions by the surfactant ligand shell, to produce Au-CsPbX3 heterostructures. These heterostructures preserve comparably high photoluminescence quantum yield (PLQY) and show identical XRD diffractograms as the parent CsPbX3 nanocrystals. In contrast, the reaction of CsPbX3 nanocrystals with Au(iii) halide salts promotes complete cation exchange of Pb ions by Au ions in the nanocrystal perovskite lattice. The cation exchange products, Cs2AuIAuIIIBr6 or Cs2AuIAuIIICl6, show XRD patterns corresponding to a tetragonal mixed halide perovskite crystal structure and show no visible photoluminescence. This crucial dependence on the oxidation state of the Au ion informs synthetic strategies for producing and optimizing metal-perovskite heterostructures and lead-free perovskite nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA